黑龙江省哈尔滨市南岗区市级名校2022年中考数学五模试卷含解析_第1页
黑龙江省哈尔滨市南岗区市级名校2022年中考数学五模试卷含解析_第2页
黑龙江省哈尔滨市南岗区市级名校2022年中考数学五模试卷含解析_第3页
黑龙江省哈尔滨市南岗区市级名校2022年中考数学五模试卷含解析_第4页
黑龙江省哈尔滨市南岗区市级名校2022年中考数学五模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )Ax(x+1)=1035B

2、x(x-1)=1035Cx(x+1)=1035Dx(x-1)=10352一元二次方程x28x2=0,配方的结果是()A(x+4)2=18B(x+4)2=14C(x4)2=18D(x4)2=143已知二次函数y=3(x1)2+k的图象上有三点A(,y1),B(2,y2),C(,y3),则y1、y2、y3的大小关系为()Ay1y2y3By2y1y3Cy3y1y2Dy3y2y14在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是ABCD5如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D

3、的坐标分别为()A(2,2),(3,2)B(2,4),(3,1)C(2,2),(3,1)D(3,1),(2,2)6下列四个几何体中,主视图是三角形的是()ABCD7二次函数y3(x1)2+2,下列说法正确的是()A图象的开口向下B图象的顶点坐标是(1,2)C当x1时,y随x的增大而减小D图象与y轴的交点坐标为(0,2)8在函数y=中,自变量x的取值范围是()Ax0Bx0Cx=0D任意实数9小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体

4、积是( )ABCD10在RtABC中,C=90,如果sinA=,那么sinB的值是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”则半径为2的“等边扇形”的面积为 12如图,四边形ABCD是菱形,DAB50,对角线AC,BD相交于点O,DHAB于H,连接OH,则DHO_度13不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是_14如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将PCD沿直线PD折叠,使点C落到点F处;过

5、点P作BPF的角平分线交AB于点E设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )15分解因式_16如图,直线l1l2l3,等边ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角1=25,则边AB与直线l1的夹角2=_17两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车

6、距地还有_千米.三、解答题(共7小题,满分69分)18(10分)如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,.(1)求教学楼的高度;(2)求的值.19(5分)如图,直线yx+4与x轴交于点A,与y轴交于点B抛物线yx2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b ,c ,点C的坐标为 如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为mPQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值如图2,若点P是第四象限的抛物线上的一点连接PB与AP,当PB

7、A+CBO45时求PBA的面积20(8分)解不等式组:21(10分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元(1)第一批花每束的进价是多少元(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?22(10分)计算:.23(12分)在中,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF求证:;求证:四边形BDFG为菱形;若,求

8、四边形BDFG的周长24(14分)如图,抛物线y=ax2+bx+c(a0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:如果全

9、班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程全班有x名同学,每名同学要送出(x-1)张;又是互送照片,总共送的张数应该是x(x-1)=1故选B考点:由实际问题抽象出一元二次方程2、C【解析】x2-8x=2,x2-8x+16=1,(x-4)2=1故选C【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法3、D【解析】试题分析:根据二次函数的解析式y3(x1)2k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小

10、为y3y2y1.故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.4、A【解析】由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可【详解】解:由题意得,由勾股定理得,故选:A【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边5、C【解析】直接利用位似图形的性质得出对应点坐标乘以得出即可【详解】解:线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为

11、原来的后得到线段CD,端点的坐标为:(2,2),(3,1)故选C【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键6、D【解析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案【详解】解:主视图是三角形的一定是一个锥体,只有D是锥体故选D【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力7、B【解析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案【详解】解:A、因为a30,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x1时,y随x增大而增大,错误;D、图象

12、与y轴的交点坐标为(0,5),错误;故选:B【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2+k中,对称轴为xh,顶点坐标为(h,k)8、C【解析】当函数表达式是二次根式时,被开方数为非负数据此可得【详解】解:根据题意知 ,解得:x=0,故选:C【点睛】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数9、A【解析】圆柱体的底面积为:()2,矿石的体积为:()2h= .故答案为.10、A【解析】R

13、tABC中,C=90,sinA=,cosA=,A+B=90,sinB=cosA=故选A二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题分析:根据题意可得圆心角的度数为:,则S=1考点:扇形的面积计算12、1【解析】试题分析:四边形ABCD是菱形,OD=OB,COD=90,DHAB,OH=BD=OB,OHB=OBH,又ABCD,OBH=ODC,在RtCOD中,ODC+DCO=90,在RtDHB中,DHO+OHB=90,DHO=DCO=50=1.考点:菱形的性质13、【解析】先求出球的总数,再根据概率公式求解即可【详解】不透明的袋子里装有2个白球,1个红球,球的总数=2+1=3,

14、从袋子中随机摸出1个球,则摸出白球的概率=故答案为【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键14、C【解析】先证明BPECDP,再根据相似三角形对应边成比例列出式子变形可得.【详解】由已知可知EPD=90,BPE+DPC=90,DPC+PDC=90,CDP=BPE,B=C=90,BPECDP,BP:CDBE:CP,即:3:(5-),(05);故选C考点:1折叠问题;2相似三角形的判定和性质;3二次函数的图象15、(x+y+z)(xyz)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解本题后三项可以为一组

15、组成完全平方式,再用平方差公式即可【详解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z)故答案为(x+y+z)(x-y-z)【点睛】本题考查了用分组分解法进行因式分解难点是采用两两分组还是三一分组本题后三项可组成完全平方公式,可把后三项分为一组16、350【解析】试题分析:如图:ABC是等边三角形,ABC=60,又直线l1l2l3,1=25,1=3=254=60-25=35,2=4=35考点:1平行线的性质;2等边三角形的性质17、90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时

16、与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.【详解】甲车先行40分钟(),所行路程为30千米,因此甲车的速度为(千米/时),设乙车的初始速度为V乙,则有,解得:(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t1小时,修好后走了t2小时,则有,解得:,452=90(千米),故答案为90.【点评】 本题考查了

17、一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.三、解答题(共7小题,满分69分)18、(1)12m;(2)【解析】(1)利用即可求解;(2)通过三角形外角的性质得出,则,设,则,在 中利用勾股定理即可求出BC,BD的长度,最后利用即可求解【详解】解:(1)在中,答:教学楼的高度为;(2)设,则,故,解得:,则故【点睛】本题主要考查解直角三角形,掌握勾股定理及正切,余弦的定义是解题的关键19、(3)3, 2,C(2,4);(2)ym2+m ,PQ与OQ的比值的最大值为;(3)SPBA3【解析】(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数

18、法求解即可得到b,c的值,令y=4便可得C点坐标(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解(3)求得P点坐标,利用图形割补法求解即可【详解】(3)直线yx+2与x轴交于点A,与y轴交于点BA(2,4),B(4,2)又抛物线过B(4,2)c2把A(2,4)代入yx2+bx+2得,422+2b+2,解得,b3抛物线解析式为,yx2+x+2令x2+x+24,解得,x2或x2C(2,4)(2)如图3,分别过P、Q作PE、QD垂直

19、于x轴交x轴于点E、D设P(m,m2+m+2),Q(n,n+2),则PEm2+m+2,QDn+2又yn又,即把n代入上式得,整理得,2ym2+2mym2+mymax即PQ与OQ的比值的最大值为(3)如图2,OBAOBP+PBA25PBA+CBO25OBPCBO此时PB过点(2,4)设直线PB解析式为,ykx+2把点(2,4)代入上式得,42k+2解得,k2直线PB解析式为,y2x+2令2x+2x2+x+2整理得, x23x4解得,x4(舍去)或x5当x5时,2x+225+27P(5,7)过P作PHcy轴于点H则S四边形OHPA(OA+PH)OH(2+5)724SOABOAOB227SBHPPH

20、BH5335SPBAS四边形OHPA+SOABSBHP24+7353【点睛】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力还考查了运用图形割补法求解坐标系内图形的面积的方法20、9x1【解析】先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案【详解】解不等式1(x1)2x,得:x1,解不等式1,得:x9,则原不等式组的解集为9x1【点睛】此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分21、(1)2元;

21、(2)第二批花的售价至少为元;【解析】(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论【详解】(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,根据题意得:,解得:,经检验:是原方程的解,且符合题意答:第一批花每束的进价是2元(2)由可知第二批菊花的进价为元设第二批菊花的售价为m元,根据题意得:,解得:答:第二批花的售价至少为元【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式22、【解析】直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案【详解】原式=92+12=【点睛】本题考查了实数运算,正确化简各数是解题的关键23、(1)证明见解析(2)证明见解析(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论