




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Chap 2 Combinatorial MethodsGhahramani 3rd edition1 Outline2.1 Introduction2.2 Counting principle2.3 Permutations2.4 Combinations2.5 Stirlings formula 2.1 IntroductionIf the sample space is finite and furthermore sample points are all equally likely, then P(A)=N(A)/N(S) So we study combinatorial ana
2、lysis here, which deals with methods of counting. 2.2 Counting principleEx 2.1 How many outcomes are there if we throw 5 dice?Ex 2.2 In tossing 4 fair dice, P(at least one 3 among these 4 dice)=?Ex 2.3 Virginia wants to give her son, Brian, 14 different baseball cards within a 7-day period. If Virgi
3、nia gives Brian cards no more than once a day, in how many way can this be done?Ex 2.6 (Standard Birthday Problem) P(at least two among n people have the same Bday)=?Counting principleThm 2.3 A set with n elements has 2n subsets.Ex 2.9 Mark has $4. He decides to bet $1 on the flip of a fair coin 4 t
4、imes. What is the probability that (a) he breaks even; (b) he wins money?(use tree diagram) 2.3 PermutationsEx 2.10 3 people, Brown, Smith, and Jones, must be scheduled for job interviews. In how many different orders can this be done?Ex 2.11 2 anthropology, 4 computer science, 3 statistics, 3 biolo
5、gy, and 5 music books are put on a bookshelf with a random arrangement. What is the probability that the books of the same subject are together?PermutationsEx 2.12 If 5 boys and 5 girls sit in a row in a random order, P(no two children of the same sex sit together)=?Thm 2.4 The number of distinguish
6、able permutations of n objects of k different types, where n1 are alike, n2 are alike, , nk are alike and n=n1+n2+nk isPermutationsEx 2.13 How many different 10-letter codes can be made using 3 as, 4 bs, and 3 cs?Ex 2.14 In how many ways can we paint 11 offices so that 4 of them will be painted gree
7、n, 3 yellow, 2 white, and the remaining 2 pink?Ex 2.15 A fair coin is flipped 10 times. P(exactly 3 heads)=?2.4 CombinationsEx 2.16 In how many ways can 2 math and 3 biology books be selected from 8 math and 6 biology books?Ex 2.17 45 instructors were selected randomly to ask whether they are happy
8、with their teaching loads. The response of 32 were negative. If Drs. Smith, Brown, and Jones were among those questioned. P(all 3 gave negative responses)=?CombinationsEx 2.18 In a small town, 11 of the 25 schoolteachers are against abortion, 8 are for abortion, and the rest are indifferent. A rando
9、m sample of 5 schoolteachers is selected for an interview. (a)P(all 5 are for abortion)=? (b)P(all 5 have the same opinion)=?Ex 2.19 In Marylands lottery, player pick 6 integers between 1 and 49, order of selection being irrelevant. P(grand prize)=? P(2nd prize)=? P(3rd prize)=?CombinationsEx 2.20 7
10、 cards are drawn from 52 without replacement. P(at least one of the cards is a king)=?Ex 2.21 5 cards are drawn from 52. P(full house)=?Ex 2.24 A professor wrote n letters and sealed them in envelopes. P(at least one letter was addressed correctly)=? Hint: Let Ei be the event that ith letter is addr
11、essed correctly. Compute P(E1UUEn) by inclusion-exclusion principle.CombinationsThm 2.5 (Binomial expansion)Ex 2.25 What is the coefficient of x2y3 in the expansion of (2x+3y)5?Ex 2.26 Evaluate the sumCombinationsEx 2.27 Evaluate the sumEx 2.28 Prove thatCombinationsEx 2.29 Prove the inclusion-exclusion principle.Ex 2.30 Distribute n distinguishable balls into k distinguishable cells so that n1 balls are distributed into the firs
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 集成电路可靠性研究-全面剖析
- 部分冠与对话系统整合-全面剖析
- 美容师三四月份工作计划(3篇)
- 2024年上海大学附属嘉定实验学校教师招聘考试真题
- 2024年湖南株洲消防救援支队技术服务队招聘考试真题
- 酒店服务标准化与个性化平衡-全面剖析
- 桂花苗国际贸易法规比较分析-全面剖析
- 基于机器学习的病理图像识别-全面剖析
- 跨境铁路运输合作模式探究-全面剖析
- 光伏发电项目技术规范执行计划
- 卫星导航定位技术与应用知到智慧树章节测试课后答案2024年秋南京工业大学
- 开封市第二届职业技能大赛无人机装调检修项目技术文件(国赛项目)
- 开题报告:高等职业院校双师型教师评价指标体系构建研究
- 医疗救助政策
- 浙江省宁波市余姚市2024年中考英语模拟试题(含答案)
- 服务质量保障措施方案
- 机场能源管理
- 高速公路路基及土石方工程施工方案与技术措施
- 技能人才评价新职业考评员培训在线考试(四川省)
- AQ 1083-2011 煤矿建设安全规范 (正式版)
- 河南省开封市铁路中学2023-2024学年八年级下学期6月期末历史试题
评论
0/150
提交评论