




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )A3.5B4C7D142有下列四个命题:相等的角是对顶角;两条直线被第三条直线所截,同位角相等;同一种正五边形一定能进行平面镶嵌;垂直于同一条直线的两条直线互相垂直其中假命题的个数有()A1
2、个 B2个 C3个 D4个3如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )ABCD4一副直角三角板如图放置,其中,点F在CB的延长线上若,则等于( )A35B25C30D155如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是( )ABCD6下列四个实数中是无理数的是( )A2.5 B103 C D1.4147如图,在矩形ABCD中,E是AD边的中点,BEAC,垂足为点F,连接DF,分析下列四个结论:AEFCAB;CF=2AF;DF=DC;tanCAD=其中正确的结论有()A4个B3个C2个D1个
3、8一个半径为24的扇形的弧长等于20,则这个扇形的圆心角是()A120B135C150D1659义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为甲=89分,乙=89分,S甲2=195,S乙2=1那么成绩较为整齐的是()A甲班B乙班C两班一样D无法确定10今年,我省启动了“关爱留守儿童工程”某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1对于这组数据,下列说法错误的是( )A平均数是15B众数是10C中位数是17D方差是 二、填空题(本大题共6个小题,每小题3分,共18分
4、)11半径为2的圆中,60的圆心角所对的弧的弧长为_.12如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MNAQ交BC于N点,作NPBD于点P,连接NQ,下列结论:AM=MN;MP=BD;BN+DQ=NQ;为定值。其中一定成立的是_.13分解因式:_14如图,小聪把一块含有60角的直角三角板的两个顶点放在直尺的对边上,并测得1=25,则2的度数是_15如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为_16已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90得到DG,当点
5、B,D,G在一条直线上时,若DG=2,则CE的长为_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限(1)求该抛物线的解析式;(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标18(8分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角=45,同时测得大楼底端A点的俯角为=30已知建筑物M的高CD=20米,求楼高AB为多少米?(1.732,结果精确到0.1米)19(8分)如图,在中,是角平分线,平分交于点,经
6、过两点的交于点,交于点,恰为的直径求证:与相切;当时,求的半径20(8分)先化简,然后从1,0,2中选一个合适的x的值,代入求值21(8分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DFBE,求证:CECF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果GCE45,请你利用(1)的结论证明:GEBEGD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B90,ABBC,E是AB上一点,且DCE45,BE4,DE=10, 求直角梯形ABCD的面积22(10分)如图 1 所示是一辆直臂高空升降车正在
7、进行外墙装饰作业图 2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m当起重臂 AC 长度为 8 m,张角HAC 为 118时,求操作平台 C 离地面的高度(果保留小数点后一位,参考数据:sin280.47,cos280.88,tan280.53)23(12分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:级、级、级、级将收集的数据绘制成如下两幅不完整的统计图请根据图中提供的信息,解答下列问题:()请补全上面的条形图()所抽查学生“诵读经典”时间的中位
8、数落在_级()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?24先化简,再求值:,其中a是方程a2+a6=0的解参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可【详解】解:菱形ABCD的周长为28,AB=284=7,OB=OD,E为AD边中点,OE是ABD的中位线,OE=AB=7=3.1故选:A【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,
9、熟记性质与定理是解题的关键2、D【解析】根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断【详解】解:对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;正五边形的内角和为540,则其内角为108,而360并不是108的整数倍,不能进行平面镶嵌,故为假命题;在同一平面内,垂直于同一条直线的两条直线平行,故为假命题故选:D【点睛】本题考查了命题与证明对顶角,垂线,同位角,镶嵌的相关概念关键是熟悉这些概念,正确判断3、D【解析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题
10、考查三视图的知识,左视图是从物体左面看到的视图.4、D【解析】直接利用三角板的特点,结合平行线的性质得出BDE=45,进而得出答案【详解】解:由题意可得:EDF=30,ABC=45,DECB,BDE=ABC=45,BDF=45-30=15故选D【点睛】此题主要考查了平行线的性质,根据平行线的性质得出BDE的度数是解题关键5、D【解析】根据要求画出图形,即可解决问题【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型6、C【解析】本题主要考查了无理数的定义根据无理数的定义:无限不循环小数
11、是无理数即可求解解:A、2.5是有理数,故选项错误;B、103是有理数,故选项错误;C、是无理数,故选项正确;D、1.414是有理数,故选项错误故选C7、A【解析】正确只要证明EAC=ACB,ABC=AFE=90即可;正确由ADBC,推出AEFCBF,推出=,由AE=AD=BC,推出=,即CF=2AF;正确只要证明DM垂直平分CF,即可证明;正确设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,可得tanCAD=【详解】如图,过D作DMBE交AC于N四边形ABCD是矩形,ADBC,ABC=90,AD=BC,EAC=ACBBEAC于点F,ABC=AFE=90,AEFCAB,故
12、正确;ADBC,AEFCBF,=AE=AD=BC,=,CF=2AF,故正确;DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NFBEAC于点F,DMBE,DNCF,DM垂直平分CF,DF=DC,故正确;设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,tanCAD=故正确故选A【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键解题时注意:相似三角形的对应边成比例8、C【解析】这个扇形的圆心角的度数为n,根据弧长公式得到20=,然后解方程即可【详解】解:
13、设这个扇形的圆心角的度数为n,根据题意得20=,解得n=150,即这个扇形的圆心角为150故选C【点睛】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径)9、B【解析】根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论【详解】S甲2S乙2,成绩较为稳定的是乙班。故选:B.【点睛】本题考查了方差,解题的关键是掌握方差的概念进行解答.10、C【解析】解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确故选C【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据
14、弧长公式可得:=,故答案为.12、【解析】如图1,作AUNQ于U,交BD于H,连接AN,AC,AMN=ABC=90,A,B,N,M四点共圆,NAM=DBC=45,ANM=ABD=45,ANM=NAM=45,AM=MN;由同角的余角相等知,HAM=PMN,RtAHMRtMPN,MP=AH=AC=BD;BAN+QAD=NAQ=45,在NAM作AU=AB=AD,且使BAN=NAU,DAQ=QAU,ABNUAN,DAQUAQ,有UAN=UAQ,BN=NU,DQ=UQ,点U在NQ上,有BN+DQ=QU+UN=NQ;如图2,作MSAB,垂足为S,作MWBC,垂足为W,点M是对角线BD上的点,四边形SMWB
15、是正方形,有MS=MW=BS=BW,AMSNMWAS=NW,AB+BN=SB+BW=2BW,BW:BM=1: ,.故答案为:点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.13、 (a+1)(a-1)【解析】根据平方差公式分解即可.【详解】(a+1)(a-1).故答案为:(a+1)(a-1).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解
16、法. 因式分解必须分解到每个因式都不能再分解为止.14、35【解析】分析:先根据两直线平行,内错角相等求出3,再根据直角三角形的性质用2=60-3代入数据进行计算即可得解详解:直尺的两边互相平行,1=25,3=1=25,2=60-3=60-25=35故答案为35点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键15、1【解析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值【详解】解:设点A的坐标为,过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,点,点B的坐标为,解得,故答案为:1【点睛】本题考查了反比例函数系数k的几何
17、意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答16、2或2【解析】本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.【详解】解: 当点在线段的延长线上时,如图3所示.过点作于,是正方形的对角线,,在中,由勾股定理,得:,在和中,,,当点在线段上时,如图4所示.过作于是正方形的对角线,在中,由勾股定理,得:在和中,,,故答案为或【点睛】本题主要考查了勾股定理和三角形全等的证明.三、解答题(共8题,
18、共72分)17、(1);(2);(3)或【解析】(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;(3)利用三角形相似求出ABCPBF,即可求出圆的半径,即可得出P点的坐标【详解】(1)抛物线的图象经过,把,代入得:解得:,抛物线解析式为;(2)抛物线改写成顶点式为,抛物线对称轴为直线,对称轴与轴的交点C的坐标为,设点B的坐标为,则,点B的坐标为,设直线解析式为:,把,代入得:,解得:,直线解析式为
19、:(3)当点P在抛物线的对称轴上,P与直线AB和x轴都相切,设P与AB相切于点F,与x轴相切于点C,如图1;PFAB,AF=AC,PF=PC,AC=1+2=3,BC=4,AB=5,AF=3,BF=2,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,);设P与AB相切于点F,与轴相切于点C,如图2:PFAB,PF=PC,AC=3,BC=4, AB=5,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,-6),综上所述,与直线和都相切时,或【点睛】本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判
20、定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键18、楼高AB为54.6米【解析】过点C作CEAB于E,解直角三角形求出CE和CE的长,进而求出AB的长【详解】解:如图,过点C作CEAB于E,则AE=CD=20,CE=20,BE=CEtan=20tan45=201=20,AB=AE+EB=20+20202.73254.6(米),答:楼高AB为54.6米【点睛】此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键19、 (1)证明见解析;(2)【解析】(1)连接OM,证明OMBE,再结合等腰三角形的性质说明AEBE,进而证明OMA
21、E;(2)结合已知求出AB,再证明AOMABE,利用相似三角形的性质计算【详解】(1)连接OM,则OM=OB,1=2,BM平分ABC,1=3,2=3,OMBC,AMO=AEB,在ABC中,AB=AC,AE是角平分线,AEBC,AEB=90,AMO=90,OMAE,点M在圆O上,AE与O相切;(2)在ABC中,AB=AC,AE是角平分线,BE=BC,ABC=C,BC=4,cosC=BE=2,cosABC=,在ABE中,AEB=90,AB=6,设O的半径为r,则AO=6-r,OMBC,AOMABE,解得,的半径为【点睛】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等
22、知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.20、-. 【解析】先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1【详解】解:原式= - = - = = =- . 当x=-1或者x=1时分式没有意义所以选择当x=2时,原式=.【点睛】分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为121、(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明CBECDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知BCE=DCF,即可证明ECF
23、=BCD=90,根据GCE=45,得GCF=GCE=45,利用全等三角形的判定方法得出ECGFCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CFAD的延长线于点F则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角ADE中利用勾股定理即可求解;试题解析:(1)如图1,在正方形ABCD中,BC=CD,B=CDF,BE=DF,CBECDF,CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知CBECDF,BCE=DCFBCE+ECD=DCF+ECD即ECF=BCD=90,又GCE=45,GCF=GCE=45,CE=CF,GCE=GCF,GC=GC,ECGFCG,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新青年律师年终个人工作总结
- 签离婚协议时应该注意以下几点
- 物业企业品牌传播与推广执行方案
- 大学生2025寒假实习报告(19篇)
- 2025年中国电腐蚀打印机行业市场发展前景及发展趋势与投资战略研究报告
- 2025年中国复合肥复混肥行业市场发展前景及发展趋势与投资战略研究报告
- 2025-2030年中国有机玻璃厚板项目投资可行性研究分析报告
- 2025-2030黑木耳行业市场发展分析及投资前景研究报告
- 2025年中国第三代太阳能电池市场供需预测及投资战略研究咨询报告
- 2025-2030高压球阀行业市场现状供需分析及投资评估规划分析研究报告
- 环境设计专业的职业规划
- 【MOOC】中央银行学-江西师范大学 中国大学慕课MOOC答案
- 陕西延长石油集团有限责任公司行测笔试题库2024
- Scratch编程-算法教学课件4.身体质量指数(BMI)测试器
- 印章管理责任承诺书4篇
- 事故隐患报告和奖励制度
- 新建项目员工四新培训
- 2024年彩色锆石项目可行性研究报告
- DB3402T 59-2023 露天矿山无人驾驶矿车作业通 用要求
- 人教版四年级下册音乐全册表格式教案(集体备课)
- 西方文论概览(第二版)-第六章课件
评论
0/150
提交评论