第2章 单自由度系统受迫振动_第1页
第2章 单自由度系统受迫振动_第2页
第2章 单自由度系统受迫振动_第3页
第2章 单自由度系统受迫振动_第4页
第2章 单自由度系统受迫振动_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022年7月5日2单自由度系统受迫振动单自由度系统受迫振动2022年7月5日3单自由度系统受迫振动单自由度系统受迫振动2022年7月5日4 线性系统的受迫振动线性系统的受迫振动 简谐力激励的强迫振动简谐力激励的强迫振动弹簧质量系统弹簧质量系统设设tieFtF0)(0F外力幅值外力幅值外力的激励频率外力的激励频率tieFkxxcxm0 振动微分方程:振动微分方程:tFcos0 x 为复数变量,分别与为复数变量,分别与 和和 相对应相对应 tFsin0实部和虚部分别与实部和虚部分别与 和和 相对应相对应 tFsin0tFcos0 mxcxm kx)(tF单自由度系统受迫振动单自由度系统受迫振动

2、/ 简谐力激励的强迫振动简谐力激励的强迫振动受力分析受力分析kcx0m)(tF2022年7月5日5tieFkxxcxm0 振动微分方程:振动微分方程:显含时间显含时间 t非齐次微分方程非齐次微分方程非齐次微分方程非齐次微分方程通解通解齐次微分方程齐次微分方程通解通解非齐次微分方程非齐次微分方程特解特解阻尼自由振动阻尼自由振动逐渐衰减逐渐衰减暂态响应暂态响应持续等幅振动持续等幅振动稳态响应稳态响应本节内容本节内容单自由度系统受迫振动单自由度系统受迫振动 / 简谐力激励的强迫振动简谐力激励的强迫振动2022年7月5日6tieFkxxcxm0 振动微分方程:振动微分方程:设:设:tiexx0)(FH

3、x代入,有:代入,有:icmkH21)(复频响应函数复频响应函数 振动微分方程:振动微分方程:tieBxxx202002 mk0kmc2kFB0引入:引入:0s)2()1 (211)(2222sssiskH222)2()1 (1)(sss2112)(sstgs振幅放大因子振幅放大因子相位差相位差则:则:iek1 :稳态响应的复振幅:稳态响应的复振幅 x静变形静变形单自由度系统受迫振动单自由度系统受迫振动 / 简谐力激励的强迫振动简谐力激励的强迫振动2022年7月5日7tieFkxxcxm0 tiexxieksssiskH1)2()1 (211)(22220)(FHx)(0tiekFxBA稳态响

4、应的实振幅稳态响应的实振幅 222)2()1 (1)(ssskFB0 tFtFcos)(0若:若:)cos()(tAtx则:则:tiesBtx21)(无阻尼情况:无阻尼情况:)(tiAetieskF20112112)(sstgs单自由度系统受迫振动单自由度系统受迫振动 / 简谐力激励的强迫振动简谐力激励的强迫振动2022年7月5日8tieFkxxcxm0 222)2()1 (1)(sss)()(0titiAeekFx2112)(sstgs2220)2()1 (1sskFA结论:结论:单自由度系统受迫振动单自由度系统受迫振动 / 简谐力激励的强迫振动简谐力激励的强迫振动2022年7月5日9单自由

5、度系统受迫振动单自由度系统受迫振动2022年7月5日10 稳态响应的特性稳态响应的特性以以s为横坐标画出为横坐标画出 曲线曲线 )(s222)2()1 (1)(sss幅频特性曲线幅频特性曲线 简谐激励作用下稳态响应特性:简谐激励作用下稳态响应特性: (1)当)当s1( ) 01激振频率相对于系统固有频率很低激振频率相对于系统固有频率很低 结论:响应的振幅结论:响应的振幅 A 与静位移与静位移 B 相当相当 )()(0titiAeekFx0123012345)(ss01 . 025. 0375. 05 . 01单自由度系统受迫振动单自由度系统受迫振动 / 稳态响应的特性稳态响应的特性2022年7

6、月5日11 稳态响应特性稳态响应特性222)2()1 (1)(sss(2)当)当s1( ) 00激振频率相对于系统固有频率很高激振频率相对于系统固有频率很高 结论:响应的振幅结论:响应的振幅 很小很小)()(0titiAeekFx0123012345)(ss01 . 025. 0375. 05 . 01单自由度系统受迫振动单自由度系统受迫振动 / 稳态响应的特性稳态响应的特性2022年7月5日12 稳态响应特性稳态响应特性(3)在以上两个领域)在以上两个领域 s1,s1结论:系统即使按无阻尼情况考虑也是可以的结论:系统即使按无阻尼情况考虑也是可以的 对应于不同对应于不同 值值,曲线较为密集,说

7、明阻尼的影响不显著曲线较为密集,说明阻尼的影响不显著 222)2()1 (1)(sss0123012345)(ss01 . 025. 0375. 05 . 01单自由度系统受迫振动单自由度系统受迫振动 / 稳态响应的特性稳态响应的特性2022年7月5日13 稳态响应特性稳态响应特性结论:共振结论:共振 振幅无穷大振幅无穷大222)2()1 (1)(sss(4)当)当1s0对应于较小对应于较小 值,值, 迅速增大迅速增大 )(s当当0)(s但共振对于来自阻尼的影响很敏感,在但共振对于来自阻尼的影响很敏感,在 s=1 附近的区域内,附近的区域内,增加阻尼使振幅明显下降增加阻尼使振幅明显下降 )()

8、(0titiAeekFx0123012345)(ss01 . 025. 0375. 05 . 01单自由度系统受迫振动单自由度系统受迫振动 / 稳态响应的特性稳态响应的特性2022年7月5日14 稳态响应特性稳态响应特性222)2()1 (1)(sss)()(0titiAeekFx(5)对于有阻尼系统,)对于有阻尼系统, 并不并不出现在出现在s=1处,而且稍偏左处,而且稍偏左 max0dsd2max121221s0123012345)(ss01 . 025. 0375. 05 . 01单自由度系统受迫振动单自由度系统受迫振动 / 稳态响应的特性稳态响应的特性2022年7月5日15 稳态响应特性

9、稳态响应特性222)2()1 (1)(sss(6)当)当2/11振幅无极值振幅无极值 0123012345)(ss01 . 025. 0375. 05 . 01单自由度系统受迫振动单自由度系统受迫振动 / 稳态响应的特性稳态响应的特性2022年7月5日16 稳态响应特性稳态响应特性222)2()1 (1)(sss)()(0titiAeekFx211sQ记:记:品质因子品质因子 在共振峰的两侧取与在共振峰的两侧取与 对应的两点对应的两点 , 2/Q1212带宽带宽Q与与 有关系有关系 :0Q阻尼越弱,阻尼越弱,Q越大,带越大,带宽越窄,共振峰越陡峭宽越窄,共振峰越陡峭 s2Q2/Q01021单自

10、由度系统受迫振动单自由度系统受迫振动 / 稳态响应的特性稳态响应的特性2022年7月5日17 稳态响应特性稳态响应特性相频特性曲线相频特性曲线 (1)当)当s1( ) 0位移与激振力反相位移与激振力反相 (3)当)当1s0共振时的相位差为共振时的相位差为 ,与阻尼无关,与阻尼无关 2)(s0123090180s单自由度系统受迫振动单自由度系统受迫振动 / 稳态响应的特性稳态响应的特性2022年7月5日18有阻尼单自由度系统有阻尼单自由度系统外部作用力规律:外部作用力规律:tFtFcos)(0假设系统固有频率:假设系统固有频率:10从左到右:从左到右:6 . 1,01. 1, 4 . 0单自由度

11、系统受迫振动单自由度系统受迫振动 / 稳态响应的特性稳态响应的特性0 0 0 2022年7月5日19单自由度系统受迫振动单自由度系统受迫振动2022年7月5日20 受迫振动的过渡阶段受迫振动的过渡阶段在系统受到激励开始振动的初始阶段,其自由振动伴随受迫在系统受到激励开始振动的初始阶段,其自由振动伴随受迫振动同时发生。系统的响应是暂态响应与稳态响应的叠加振动同时发生。系统的响应是暂态响应与稳态响应的叠加 tieFkxxcxm0 显含显含 t,非齐次微分方程,非齐次微分方程非齐次微分方程非齐次微分方程通解通解齐次微分方程齐次微分方程通解通解非齐次微分方程非齐次微分方程特解特解阻尼自由振动阻尼自由振

12、动逐渐衰减逐渐衰减暂态响应暂态响应持续等幅振动持续等幅振动稳态响应稳态响应回顾:回顾:单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日21 受迫振动的过渡阶段受迫振动的过渡阶段考虑无阻尼的情况考虑无阻尼的情况 tFkxxmsin0 正弦激励正弦激励0)0(xx0)0(xxtBxxsin2020 kFB0tsBtctctxsin1sincos)(20201通解:通解:齐次通解齐次通解非齐次特解非齐次特解0s21cc、初始条件决定初始条件决定 单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日22

13、tFkxxmsin0 0)0(xx0)0(xxtsBtctctxsin1sincos)(202010)0(xx01xc 0)0(xx2021)0(sBcx 20021sBsxc tsBtsBstxtxtxtxtxsin1sin1sincos)()()(2020000021 初始条件响应初始条件响应自由伴随振动自由伴随振动强迫响应强迫响应特点:以系统特点:以系统固有频率为振固有频率为振动频率动频率单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日23tsBtsBstxtxtxtxtxsin1sin1sincos)()()(2020000021 初

14、始条件响应初始条件响应自由伴随振动自由伴随振动强迫响应强迫响应如果是零初始条件如果是零初始条件tsBtsBstxtxtxsin1sin1)()()(20221自由伴随振动自由伴随振动强迫响应强迫响应单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日24零初始条件零初始条件tsBtsBstxtxtxsin1sin1)()()(20221(2) s 1)(0)(0TT (1) s 1)(0)(0TT 稳态受迫振动进行一个循环时间内,稳态受迫振动进行一个循环时间内,自由伴随振动完成多个循环自由伴随振动完成多个循环自由伴随振动进行一个循环时间自由伴随振

15、动进行一个循环时间内,稳态受迫振动完成多个循环内,稳态受迫振动完成多个循环受迫振动响应成为自由振动响应受迫振动响应成为自由振动响应曲线上迭加的一个振荡运动曲线上迭加的一个振荡运动受迫振动响应成为稳态响应曲线受迫振动响应成为稳态响应曲线上迭加的一个振荡运动上迭加的一个振荡运动0/2/20t)(tx0/2/20t)(tx稳态响应稳态响应全响应全响应单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日25零初始条件零初始条件tsBtsBstxtxtxsin1sin1)()()(202210/2/20t)(tx单自由度系统受迫振动单自由度系统受迫振动 /

16、 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日26由于系统是线性的,也可利用叠加定理求解由于系统是线性的,也可利用叠加定理求解 000)0()0(sinxxxxtFkxxm , 0020)0()0(0 xxxxxx , 0)0(0)0(sin2020 xxtBxx ,txtxtx000001sincos)(tsBtsBstxsin1sin1)(2022 )()()(21txtxtx通解:通解:tsBtsBstxtxsin1sin1sincos20200000初始条件响应初始条件响应自由伴随振动自由伴随振动强迫响应强迫响应单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段

17、受迫振动的过渡阶段2022年7月5日27tsBtsBstxtxtxtxtxsin1sin1sincos)()()(2020000021 )sin(sin1sincos 0200000tstsBtxtx tFkxxmsin0 0)0(xx0)0(xx实际中总是存在着阻尼的影响,因而上式右端的暂态运动会实际中总是存在着阻尼的影响,因而上式右端的暂态运动会逐渐衰减,进而消失,最终系统为稳态响应逐渐衰减,进而消失,最终系统为稳态响应 单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日2800 x例:例:计算初始条件,以使计算初始条件,以使tFkxxms

18、in0 的响应只以频率的响应只以频率 振动振动解:解:tsBtsBstxtxtxtxtxsin1sin1sincos)()()(2020000021 的全解:的全解:tFkxxmsin0 如果要使系统响应只以如果要使系统响应只以 为频率振动为频率振动必须成立:必须成立:2001sBsx初始条件:初始条件:00 x2001sBsxkFB00s单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日29例:例:计算初始条件,以使计算初始条件,以使tFkxxmcos0 的响应只以频率的响应只以频率 振动振动解:解:tsBtctctxcos1sincos)(

19、20201的全解:的全解:tFkxxmcos0 tsBtsBstxtxtxtxtxcos1sin1sincos)()()(2020000021正确?正确?tsin全解:全解:由由0)0(xx2011sBxctsBtctctxcos1cossin)(2002001求一阶导数:求一阶导数:由由0)0(xx020cx 002/xc单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日30tsBtctctxcos1sincos)(20201全解:全解:2011sBxc002xc因此:因此:tsBtxtsBxtxcos1sincos)1()(2000020t

20、sBtsBtxtxcos1cos1sincos20200000的全解:的全解:tFkxxmsin0 tsBtsBstxtxtxsin1sin1sincos)(20200000相同相同不同不同单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日31例:例:计算初始条件,以使计算初始条件,以使tFkxxmcos0 的响应只以频率的响应只以频率 振动振动全解:全解:tsBtsBtxtxtxcos1cos1sincos)(20200000如果要使系统响应只以如果要使系统响应只以 为频率振动为频率振动初始条件:初始条件:00 x 201sBx 0单自由度系

21、统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日32若激励频率与固有频率十分接近若激励频率与固有频率十分接近 0s令:令:21s 小量小量 )sin(sin1)(02tstsBtx tsBtsBstxtxtxtxtxsin1sin1sincos)()()(2020000021 )sin(sin1sincos 0200000tstsBtxtx 考虑零初始条件,有:考虑零初始条件,有:tFkxxmsin0 0)0(xx0)0(xx1单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日33)sin(sin1)(

22、02tstsBtx 代入:代入:21s )sin(sin) 144(102tstB ttB00cossin2 )sin(sin40tstB sin)21sin(400ttB )sin2sincos2cos(sin400000tttttB ttB002sincos4 tttB000cossin2cos4 单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日34ttBtx00cossin2)( 可看作频率为可看作频率为 但振幅按但振幅按 规律缓慢变化的振动规律缓慢变化的振动 0tB0sin2这种在接近共振时发生的特殊振动现象称为这种在接近共振时发生的

23、特殊振动现象称为”拍拍”02BtB0sin202tB0sin20t)(tx0拍的周期:拍的周期:tB0sin2 图形包络线:图形包络线: 单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日350当当ttBtx00cossin2)(随随 t 增大,振幅无限增大,无阻尼系统共振的情形增大,振幅无限增大,无阻尼系统共振的情形 0)(txttB021tB021 ttB00cos21 响应曲线响应曲线21sttB00cos2单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日36讨论有阻尼系统在过渡阶段对简

24、谐激励的响应讨论有阻尼系统在过渡阶段对简谐激励的响应 000)0(,)0(sinxxxxtFkxxcxm )sin(sin)cossin(cossin )sincos()(0000000tBtsteBtxxtxetxdddtdddtmk0kmc2201d0skFB0222)2()1 (1ss2112sstg初始条件响应初始条件响应自由伴随振动自由伴随振动强迫响应强迫响应利用前述相同的方法,有:利用前述相同的方法,有:单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日37)sin(sin)cossin(cossin )sincos()(00000

25、00tBtsteBtxxtxetxdddtdddt初始条件响应初始条件响应经过充分长时间后,作为瞬态响应的前两种振动都将消失,经过充分长时间后,作为瞬态响应的前两种振动都将消失,只剩稳态强迫振动只剩稳态强迫振动 自由伴随振动自由伴随振动强迫响应强迫响应0)(txt0 x强迫响应强迫响应全响应全响应单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日38)sin(sin)cossin(cossin )sincos()(0000000tBtsteBtxxtxetxdddtdddt初始条件响应初始条件响应自由伴随振动自由伴随振动强迫响应强迫响应)sin

26、(sin)cossin(cossin)(00tBtsteBtxdddt0)0(x0)0(x 对于零初始条件:对于零初始条件:单自由度系统受迫振动单自由度系统受迫振动 / 受迫振动的过渡阶段受迫振动的过渡阶段2022年7月5日39单自由度系统受迫振动单自由度系统受迫振动2022年7月5日40 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动背景:地基振动,转子偏心引起的受迫振动背景:地基振动,转子偏心引起的受迫振动特点:激振惯性力的幅值与频率的平方成正比例特点:激振惯性力的幅值与频率的平方成正比例 xfkc1xmx0mkxxfc1x单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受

27、迫振动简谐惯性力激励的受迫振动mxc2k2kte2022年7月5日41 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动背景:地基振动,转子偏心引起的受迫振动背景:地基振动,转子偏心引起的受迫振动特点:激振惯性力的幅值与频率的平方成正比例特点:激振惯性力的幅值与频率的平方成正比例 tifDetx)(坐标:坐标:动力学方程:动力学方程: 0)(1111kxxcxxmf 基座位移规律基座位移规律 :x1 相对基座位移相对基座位移)(1fxxm 1kx1xcmm)(1fxxm 1xc1kx受力分析受力分析xfkc1xmx0mkxxfc1xD:基座位移振幅:基座位移振幅单自由度系统受迫振动单自由度系统

28、受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动tiemDkxxcxm21111 2022年7月5日42tiemDkxxcxm21111 tieFkxxcxm0 )(tiBexkFB0222)2()1 (1ss2112)(sstgs回顾:回顾:令:令:02FmD)(11tiBex)(01tiekF )(21tiekmD)(22221)2()1 ( tiDesss)(11tiDe有:有:22221)2()1 ()(ssss21112)(sstgs其中:其中:单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动xfkc1xmx0mk200s2

29、022年7月5日43tiemDkxxcxm21111 )(111tiDex22221)2()1 ()(ssss21112)(sstgs0s0.25 0.5 0.75 1.0 2.0 1 0 )(1ss1 0 0190180s)(1s幅频曲线幅频曲线相频曲线相频曲线单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动2022年7月5日44系统固有频率从左到右:系统固有频率从左到右:63. 0, 0 . 1, 6 . 1000单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动0.25 0.5 0.75 1.0 2

30、.0 1 0 )(1ss1 0 0190180s)(1s支撑运动:支撑运动:tDtxfsin)(001. 1D)(111tiDex22221)2()1 ()(ssss21112)(sstgsD如何分析如何分析s1,s1,s=1?2022年7月5日45若以绝对位移若以绝对位移 x 为坐标为坐标fxxx1titiDeDex)(11)(111tiDextifDetx)(其中:其中:则有:则有:)(111)(tiiDee22221)2()1 ()(ssss21112)(sstgs0sxfkc1xmx0mkxxfc1x单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的

31、受迫振动2022年7月5日46)sin(cos)2()1 (11222211isssei22222)2()1 ()2(1sss)2(12stg)(111)(tiiDeex22221)2()1 ()(ssss21112)(sstgs22222222222)2()1 (2)2()1 (1)2()1 (sssissssss222)2()1 (21sssi22222)2()1 ()2(1iesss22ie22222)2(1)2()1 (1iesss单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动2022年7月5日47)(111)(tiiDeex2121ii

32、ee22222)2()1 ()2(1sss)2(12stg)(2)(221titiDeDex21代入:代入:tiesDx211无阻尼情况:无阻尼情况:22221)2()1 ()(ssss21112)(sstgsxfkc1xmx0mkxxfc1x单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动2022年7月5日4822222)2()1 ()2(1sss)(2)(221titiDeDex幅频曲线幅频曲线01010 0.1 0.25 0.35 0.5 1.0 )(2ss2可看出:可看出:当当 时,时,2s12振幅恒为支撑运动振幅振幅恒为支撑运动振幅D当当

33、 时,时,2s12振幅恒小于振幅恒小于D增加阻尼反而使振幅增大增加阻尼反而使振幅增大xfkc1xmx0mkxxfc1x单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动2022年7月5日49例:例:汽车的拖车在波形道汽车的拖车在波形道路上行驶路上行驶已知拖车的质量满载已知拖车的质量满载时为时为 m1=1000 kg空载时为空载时为 m2=250 kg悬挂弹簧的刚度为悬挂弹簧的刚度为 k =350 kN/m阻尼比在满载时为阻尼比在满载时为5 . 01车速为车速为 v =100 km/h路面呈正弦波形,可表示为路面呈正弦波形,可表示为lzaxf2sin求

34、:求: 拖车在满载和空载时的振幅比拖车在满载和空载时的振幅比l =5 ml =5 mmk/2cx0k/2xfalxfz单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动2022年7月5日50解:解:汽车行驶的路程可表示为:汽车行驶的路程可表示为:路面的激励频率:路面的激励频率:tlvaxf2sinvtz srad /9 .34kmccr202mc得:得:kmcccr2c、k 为常数,因此为常数,因此 与与 成反比成反比m因此得到空载时的阻尼比为:因此得到空载时的阻尼比为:2112mm满载和空载时的频率比:满载和空载时的频率比:011s93. 0202

35、2kms因为有:因为有:单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动l =5 mmk/2cx0k/2xfalxfz满载满载: m1=1000 kg空载空载: m2=250 kg5 . 01车速车速 : v =100 km/hlzaxf2sinlv20 . 1k =350 kN/mkm187. 12022年7月5日51满载时频率比满载时频率比记:满载时振幅记:满载时振幅 B1,空载时振幅,空载时振幅 B2有:有:满载时阻尼比满载时阻尼比空载时阻尼比空载时阻尼比0 . 1287. 11s空载时频率比空载时频率比93. 02s68. 0)2()1 (

36、)2(12112212111sssaB13. 1)2()1 ()2(12222222222sssaB因此满载和空载时的振幅比:因此满载和空载时的振幅比:60. 021BB5 . 01单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动l =5 ml =5 mmk/2cx0k/2xfalxfz2022年7月5日52例:例: 已知梁截面惯性矩已知梁截面惯性矩I,弹性模量,弹性模量E,梁质量不计梁质量不计支座支座B不动不动求:质量求:质量m的稳态振动振幅的稳态振动振幅单自由度系统受迫振动单自由度系统受迫振动 / 工程中的受迫振动问题工程中的受迫振动问题 /

37、振动的隔离振动的隔离支座支座A产生微小竖直振动产生微小竖直振动tdyAsinambABAy解:解:固有频率:固有频率:/0g简化图简化图在质量在质量m作用下,由材料力学可求出静挠度作用下,由材料力学可求出静挠度mkfxfx:因:因yA的运动而产生的质量的运动而产生的质量m处的运动处的运动tabdyabxAfsin)/()/(动力学方程:动力学方程:0)(fxxkxm takbdkxxmsin)/( 振幅:振幅:211/skakbdx0s211sabd杆做刚性处理,其柔性由弹簧表示杆做刚性处理,其柔性由弹簧表示2022年7月5日53 支承运动小结支承运动小结22222)2()1 ()2(1sss

38、)2(12stg21相对位移相对位移tifDetx)(基座位移规律基座位移规律 :tiemDkxxcxm21111 )(111tiDex22221)2()1 ()(ssss21112)(sstgs绝对位移绝对位移)(21tifDexxxxfkc1xmx0mkxxfc1x单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动2022年7月5日54高速旋转机械中,偏心质量产生的离心惯性力是主要的激励来源。旋转高速旋转机械中,偏心质量产生的离心惯性力是主要的激励来源。旋转机械总质量为机械总质量为M,转子偏心质量为,转子偏心质量为m,偏心距为,偏心距为e,转子转

39、动角速度为,转子转动角速度为 x:机器离开平衡位置的:机器离开平衡位置的垂直位移垂直位移 则偏心质量的垂直位移:则偏心质量的垂直位移: texsin由达朗伯原理,系统在垂直方由达朗伯原理,系统在垂直方向的动力学方程:向的动力学方程:0)sin()(22kxxctexdtdmxmM tmekxxcxMsin2 简化图形简化图形mxc2k2kte单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动Mkctmesin2xMkcxtem激振惯性力的幅值与频率的平方成正比例激振惯性力的幅值与频率的平方成正比例 2022年7月5日55tmekxxcxMsin2 m

40、e :不平衡量:不平衡量 :不平衡量引起的离心惯性力:不平衡量引起的离心惯性力 2me20meF 设:设:)sin()(tBtx222)2()1 (1sskmekFB202112sstg0sMK0得:得:单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动Mkctmesin2x2022年7月5日56)sin()(tBtx222)2()1 (1sskmekFB202112sstgB 又写为又写为 :MmekmeB2022)sin()2()1 ()(2222 tMmessstx22221)2()1 (sssMmeB 12sMme )sin(11 tB单自由

41、度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动2022年7月5日57例:偏心质量系统例:偏心质量系统共振时测得最大振幅共振时测得最大振幅为为0.1 m由自由衰减振动测得由自由衰减振动测得阻尼系数为阻尼系数为05. 0假定假定%10Mm求:求: (1)偏心距)偏心距 e,(2)若要使系统共振时振幅为)若要使系统共振时振幅为0.01 m,系统的总质量需要增加多少?系统的总质量需要增加多少?mxc2k2kte单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动Mkctmesin2x2022年7月5日58解解:(1)共

42、振时测得最大振幅共振时测得最大振幅为为0.1 m由自由衰减振动测得由自由衰减振动测得阻尼系数为阻尼系数为05. 0%10Mm共振时最大振幅共振时最大振幅)sin()2()1 ()(2222tMmessstx)(1 . 021mMme)(1 . 0me (2)若要使系统共振时振幅为)若要使系统共振时振幅为0.01 m)(01. 021mMMme)(01. 01 . 005. 021mMMm9MMMM9mxc2k2kte单自由度系统受迫振动单自由度系统受迫振动 / 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动Mkctmesin2x2022年7月5日59单自由度系统受迫振动单自由度系统受迫振动

43、/ 简谐惯性力激励的受迫振动简谐惯性力激励的受迫振动tmekxxcxMsin2 mxc2k2kteMkctmesin2xMkcxtem)sin()(tBtx222)2()1 (1ss kmeB2 2112sstg 0sMk 0 偏心质量小结偏心质量小结)sin()(11tBtx22221)2()1 (sss 解解1:解解2:MmeB 12022年7月5日60单自由度系统受迫振动单自由度系统受迫振动2022年7月5日61 机械阻抗与导纳机械阻抗与导纳工程中常用机械阻抗来分析结构的动力特性工程中常用机械阻抗来分析结构的动力特性 机械阻抗定义为简谐激振时复数形式的输入与输出之比机械阻抗定义为简谐激振时复数形式的输入与输出之比 tieFkxxcxm0 tieF0tiexx 0)(FHx icmkH21)(titixexeFZ0)( 动力学方程:动力学方程:输入:输入:输出:输出tiexx 代入,得:代入,得:复频响应函数复频响应函数根据定义,位移阻抗:根据定义,位移阻抗:icmk2xF0 )(1H单自由度系统受迫振动单自由度系统受迫振动 / 机械阻抗和导纳机械阻抗和导纳

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论