版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1二次函数y=ax2+bx2(a0)的图象的顶点在第三象限,且过点(1,0),设t=ab2,则t值的变化范围是()A2t0B3t0C4t2
2、D4t02如图,已知点A、B、C、D在O上,圆心O在D内部,四边形ABCO为平行四边形,则DAO与DCO的度数和是()A60B45C35D303某城市几条道路的位置关系如图所示,已知ABCD,AE与AB的夹角为48,若CF与EF的长度相等,则C的度数为()A48B40C30D244如图,一段抛物线:y=x(x5)(0x5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180得C2, 交x轴于点A2;将C2绕点A2旋转180得C3, 交x轴于点A3;如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )A4B4C6D65自1993年起,联合国将每年的3月
3、11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表 节约用水量(单位:吨)11.11.411.5家庭数46531这组数据的中位数和众数分别是( )A1.1,1.1;B1.4,1.1;C1.3,1.4;D1.3,1.16已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )ANOQ42BNOP132CPON比MOQ大DMOQ与MOP互补7已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作
4、:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;在这样连续6次旋转的过程中,点B,O间的距离不可能是()A0B0.8C2.5D3.48如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AEBD,EFBC,tanABC=,EF=,则AB的长为()ABC1D9第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、
5、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )ABCD10如图,在平面直角坐标系xOy中,点C,B,E在y轴上,RtABC经过变化得到RtEDO,若点B的坐标为(0,1),OD2,则这种变化可以是( )AABC绕点C顺时针旋转90,再向下平移5个单位长度BABC绕点C逆时针旋转90,再向下平移5个单位长度CABC绕点O顺时针旋转90,再向左平移3个单位长度DABC绕点O逆时针旋转90,再向右平移1个单位长度二、填空题(共7小题,每小题3分,满分21分)11计算a10a5=_12(201
6、7黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是_13化简:_.14对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,=0.02;机床乙:=10,=0.06,由此可知:_(填甲或乙)机床性能好.15在矩形ABCD中,AB=4,BC=9,点E是AD边上一动点,将边AB沿BE折叠,点A的对应点为A,若点A到矩形较长两对边的距离之比为1:3,则AE的长为_16如图,ABCD,点E是CD上一点,AEC40,EF平分AED交AB于点F,
7、则AFE_度.17在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_环的成绩三、解答题(共7小题,满分69分)18(10分)如图,已知点A(2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标19(5分)如图,已知矩形 OABC 的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点
8、B和点C(1)求点 A 的坐标;(2)结合函数的图象,求当 y0y=ax2+bx2过点(1,0),a+b-2=0.a0,2-b0.顶点在第三象限,-0.2-a0.0b2.0a2.t=a-b-2.4t0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.2、A【解析】试题解析:连接OD,四边形ABCO为平行四边形,B=AOC,点A. B. C.D在O上,由圆周角定理得, 解得, OA=OD,OD=OC,DAO=ODA,ODC=DCO,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.3、D【解析】解:ABCD,1=BAE=48CF=EF,C=E1=C+E,C
9、=1=48=24故选D点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等4、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由20175=4032,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可详解:当y=0时,x(x5)=0,解得x1=0,x2=5,则A1(5,0),OA1=5,将C1绕点A1旋转180得C2,交x轴于点A2;将C2绕点A2旋转180得C3,交x轴于点A3;如此进行下去,得到一“波浪线”,A1A2=A
10、2A3=OA1=5,抛物线C404的解析式为y=(x5403)(x5404),即y=(x2015)(x2020),当x=2018时,y=(20182015)(20182020)=1,即m=1故选C点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键5、D【解析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个详解:这组数据的中位数是; 这组数据的众数是1.1 故选D点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,
11、计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数6、C【解析】试题分析:如图所示:NOQ=138,选项A错误;NOP=48,选项B错误;如图可得PON=48,MOQ=42,所以PON比MOQ大,选项C正确;由以上可得,MOQ与MOP不互补,选项D错误故答案选C考点:角的度量.7、D【解析】如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0d,即0d3.1,由此即可判断;【详解】如图,点O的运动轨迹是图在黄线,作CHBD于点H,
12、六边形ABCDE是正六边形,BCD=120,CBH=30,BH=cos30 BC=,BD=.DK=,BK=,点B,O间的距离d的最小值为0,最大值为线段BK=,0d,即0d3.1,故点B,O间的距离不可能是3.4,故选:D【点睛】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键8、B【解析】由平行四边形性质得出AB=CD,ABCD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出ECF=ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长【详解】四边形ABCD是平行四边形,ABDC,
13、AB=CD,AEBD,四边形ABDE是平行四边形,AB=DE,AB=DE=CD,即D为CE中点,EFBC,EFC=90,ABCD,ECF=ABC,tanECF=tanABC=,在RtCFE中,EF=,tanECF=,CF=,根据勾股定理得,CE=,AB=CE=,故选B【点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键9、B【解析】先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解【详解】有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,从
14、中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.故选B【点睛】本题考查了简单事件的概率用到的知识点为:概率=所求情况数与总情况数之比10、C【解析】RtABC通过变换得到RtODE,应先旋转然后平移即可【详解】RtABC经过变化得到RtEDO,点B的坐标为(0,1),OD2,DOBC2,CO3,将ABC绕点C顺时针旋转90,再向下平移3个单位长度,即可得到DOE;或将ABC绕点O顺时针旋转90,再向左平移3个单位长度,即可得到DOE;故选:C【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化二、填空题(共7小题,每小题3分,满分2
15、1分)11、a1【解析】试题分析:根据同底数幂的除法底数不变指数相减,可得答案原式=a10-1=a1,故答案为a1考点:同底数幂的除法12、10,【解析】解:如图,过点A作ADBC于点D,ABC边AB=AC=10,BC=12,BD=DC=6,AD=8,如图所示:可得四边形ACBD是矩形,则其对角线长为:10;如图所示:AD=8,连接BC,过点C作CEBD于点E,则EC=8,BE=2BD=12,则BC=;如图所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC=故答案为10,13、【解析】根据分式的运算法则即可求解.【详解】原式=.故答案为:.【点睛】此题主要考查分式的运算,解题的关
16、键是熟知分式的运算法则.14、甲【解析】试题分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案试题解析:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好故答案为甲考点:1.方差;2.算术平均数15、或【解析】由,得,所以.再以和两种情况分类讨论即可得出答案.【详解】因为翻折,所以,,过作,交AD于F,交BC于G,根据题意,,.若点在矩形ABCD的内部时,如图则GF=AB=4,由可知.又.又.若则,.则.若则,.则 .故答案或.【点睛】本题主要考查了翻折问题和相似三角形判定,灵活运用是关键错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2
17、)没有分情况讨论,由于点AA到矩形较长两对边的距离之比为1:3,需要分AM:AN=1:3,AM:AN=1:3和AM:AN=3:1,AM:AN=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.16、70.【解析】由平角求出AED的度数,由角平分线得出DEF的度数,再由平行线的性质即可求出AFE的度数.【详解】AEC40,AED180AEC140,EF平分AED,又ABCD,AFEDEF70.故答案为:70【点睛】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出DEF的度数是解决问题的关键.17、8【解析】为了使第8次的环数最少,可使后面的2次射击都达
18、到最高环数,即10环.设第8次射击环数为x环,根据题意列出一元一次不等式62+x+21089解之,得x7x表示环数,故x为正整数且x7,则x的最小值为8即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”不等式,再由不等式的相关知识确定问题的答案.三、解答题(共7小题,满分69分)18、(1)y=38x2+34x+3;D(1,278);(2)P(3,158)【解析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2
19、)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-38m2+34m+3),则F(m,-34m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标【详解】解:(1)设抛物线的解析式为y=a(x+2)(x4),将点C(0,3)代入得:8a=3,解得:a=38,y=38x2+34x+3=38(x1)2+278,抛物线的解析式为y=38x2+34x+3,且顶点D(1,278);(2)B(4,0),C(0,3),BC的解析式为:y=34x+3,D(1,278),当x=1时,y=34+3=94,E(1,94),DE=278-94=98,设P(m,3
20、8m2+34m+3),则F(m,34m+3),四边形DEFP是平行四边形,且DEFP,DE=FP,即(38m2+34m+3)(34m+3)=98,解得:m1=1(舍),m2=3,P(3,158)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中19、(1);(2)【解析】(1)当时,求出点C的坐标,根据四边形为矩形,得出点B的坐标,进而求出点A即可;(2)先求出抛物线图象与x轴的两个交点,结合图象即可得出【详解】解:(1)当时,函数的值为-2,点的坐标为 四边形为矩形,解方程,得点的坐标为点的坐标为(2)
21、解方程,得由图象可知,当时,的取值范围是【点睛】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质20、(1)50万人;(2)43.2;统计图见解析(3)【解析】(1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数;(2)先用360乘以E的百分比求得E景点所对应的圆心角的度数,再根据B、D景点接待游客数补全条形统计图;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率【详解】解:(1)该市景点共接待游客数为:1530%=50(万人);(2
22、)扇形统计图中E景点所对应的圆心角的度数是:360=43.2,B景点的人数为5024%=12(万人)、D景点的人数为5018%=9(万人),补全条形统计图如下:故答案为43.2;(3)画树状图可得:共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,P(同时选择去同一个景点)【点睛】本题考查的是统计以及用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比21、,【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a的值,代入计算即可求出值解:原式=,当,原式=. “点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年计划生育技术服务项目评估分析报告
- 2024年汽车尾气自动测定仪项目立项申请报告模板
- 2024年炸药、烟火及火工产品项目立项申请报告范稿
- 2024年毡呢、包装用织物制品项目规划申请报告模板
- 2024年超低频测振仪项目立项申请报告范文
- 2024年溶剂型色浆项目提案报告
- 2025届山西省新绛县高三第五次模拟考试英语试卷含解析
- 2025届山东省泰安市泰山区泰安一中高考冲刺英语模拟试题含解析
- 2025届江西省南昌市莲塘一中高三第三次测评数学试卷含解析
- 2025届贵州省铜仁市德江县第二中学高考仿真卷英语试卷含解析
- 2.高血压护理常规
- 低蛋白血症的护理查房培训课件ppt
- TDS3000基本操作TDS3000基本操作
- 教师资格证必背时政类教育热点
- 政府采购基础知识培训(最终稿)
- 华为能你也能:IPD产品管理实践
- 西安银行2023年校园招聘笔试历年难、易错考点试题含答案附详解
- 护理题库-基层卫生岗位练兵和技能竞赛试题
- 期中考试总结表彰大会方案
- 六年级下册数学教学设计-《绘制校园平面图》北师大版
- 2021年髋关节置换术后床下活动指引
评论
0/150
提交评论