版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )Ak2且k1Bk<2且k1Ck=2Dk=2或12从甲、乙、丙
2、、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲21.5,S乙22.6,S丙23.5,S丁23.68,你认为派谁去参赛更合适()A甲B乙C丙D丁3正比例函数y2kx的图象如图所示,则y(k2)x1k的图象大致是()ABCD4如图,在ABC中,AD是BC边的中线,ADC=30°,将ADC沿AD折叠,使C点落在C的位置,若BC=4,则BC的长为()A2B2C4D35某城市几条道路的位置关系如图所示,已知ABCD,AE与AB的夹角为48°,若CF与EF的长度相等,则C的度数为()A48°B40°C30°D2
3、4°6在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A中位数是2B众数是17C平均数是2D方差是27sin60°的值为()ABCD8已知二次函数y=(x+a)(xa1),点P(x0,m),点Q(1,n)都在该函数图象上,若mn,则x0的取值范围是()A0x01B0x01且x0Cx00或x01D0x019如图,BD为O的直径,点A为弧BDC的中点,ABD35°,则DBC()A20
4、6;B35°C15°D45°10由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)114是_的算术平方根12若|a|=2016,则a=_.13若关于x的一元二次方程kx2+2(k+1)x+k1=0有两个实数根,则k的取值范围是 14如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_cm15如图,在O中,点B为半径OA上一点,且OA13
5、,AB1,若CD是一条过点B的动弦,则弦CD的最小值为_16不等式组的解集是 三、解答题(共8题,共72分)17(8分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件求原计划每天生产的零件个数和规定的天数为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数18(8分)如图,顶点为C的抛物线y=ax2+bx(a0)
6、经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,AOB=120°(1)求这条抛物线的表达式;(2)过点C作CEOB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE,旋转角为(0°120°),连接EA、EB,求EA+EB的最小值19(8分)已知,关于x的方程x2mx+m210,(1)不解方程,判断此方程根的情况;(2)若x2是该方程的一个根,求m的值20(8分)如图,为的直径,为上一点,过点作的弦,设(1)若时,求、的度数各是多少?(2)当时,是否存在正
7、实数,使弦最短?如果存在,求出的值,如果不存在,说明理由;(3)在(1)的条件下,且,求弦的长21(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分100分;B级:75分89分;C级:60分74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为 ,C级学生所在的扇形圆心角的度数为 ;(2)该班学生体育测试成绩的中位数落在等级 内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?22(10
8、分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度(结果保留根号)23(12分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形是平行四边形;(2)如果,求证四边形是矩形.24甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜如果指针落在
9、分割线上,则需要重新转动转盘请问这个游戏对甲、乙双方公平吗?说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+10时,函数为二次函数,根据条件可知其判别式为0,可求得k的值【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-10,即k1时,由函数与x轴只有一个交点可知,=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情
10、况2、A【解析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.3、B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,2k<0,得k<0,k2<0,1k>0,函数y=(k2)x+1k图象经过一、二、四象限,故选B.4、A【解析】连接CC,将ADC沿AD折叠,使C点落在C的位置,ADC=30°,ADC=ADC=30°,CD=CD,CDC=ADC+ADC=60°,DCC是等边三角形,DCC=60°,在ABC中,AD是
11、BC边的中线,即BD=CD,CD=BD,DBC=DCB=CDC=30°,BCC=DCB+DCC=90°,BC=4,BC=BCcosDBC=4×=2,故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键5、D【解析】解:ABCD,1=BAE=48°CF=EF,C=E1=C+E,C=1=×48°=24°故选D点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平
12、行,内错角相等6、A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;这组样本数据中,3出现了17次,出现的次数最多,这组数据的众数是3;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,这组数据的中位数为2,故选A考点:1.方差;2.加权平均数;3.中位数;4.众数7、B【解析】解:sin60°=故选B8、D【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答详解:二次函数y=(x+a)(xa1),当y=0时,x1=a,x2=a+1
13、,对称轴为:x= 当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由mn,得:0x0; 当P在对称轴的右侧时,y随x的增大而增大,由mn,得:x01 综上所述:mn,所求x0的取值范围0x01 故选D点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏9、A【解析】根据ABD35°就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得DBC【详解】解:ABD35°,的度数都是70°,BD为直径,的度数是180°70°110°,点A为弧BDC的中点,的度数也是110
14、76;,的度数是110°+110°180°40°,DBC20°,故选:A【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力10、A【解析】由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【点睛】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、16.【解析】试题解析:4
15、2=16,4是16的算术平方根考点:算术平方根12、±1【解析】试题分析:根据零指数幂的性质(),可知|a|=1,座椅可知a=±1.13、k-13,且k1【解析】试题解析:a=k,b=2(k+1),c=k-1,=4(k+1)2-4×k×(k-1)=3k+11,解得:k-13,原方程是一元二次方程,k1考点:根的判别式14、40cm【解析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可【详解】圆锥的底面直径为60cm,圆锥的底面周长为60cm,扇形的弧长为60cm,设扇形的半径为r,则=60,解得:r=40c
16、m,故答案为:40cm【点睛】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解15、10【解析】连接OC,当CDOA时CD的值最小,然后根据垂径定理和勾股定理求解即可.【详解】连接OC,当CDOA时CD的值最小,OA=13,AB=1,OB=13-1=12,BC=,CD=5×2=10.故答案为10.【点睛】本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .16、1x1【解析】解一元一次不等式组【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共
17、部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)因此,解第一个不等式得,x1,解第二个不等式得,x1,不等式组的解集是1x1三、解答题(共8题,共72分)17、(1)2400个, 10天;(2)1人【解析】(1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程5
18、15;20×(1+20%)×+2400 ×(10-2)=24000,解得y的值即为原计划安排的工人人数【详解】解:(1)解:设原计划每天生产零件x个,由题意得,解得x=2400,经检验,x=2400是原方程的根,且符合题意规定的天数为24000÷2400=10(天)答:原计划每天生产零件2400个,规定的天数是10天(2)设原计划安排的工人人数为y人,由题意得,5×20×(1+20%)×+2400 ×(10-2)=24000,解得,y=1经检验,y=1是原方程的根,且符合题意答:原计划安排的工人人数为1人【点睛】本
19、题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验18、 (1) y=x2x;(2)点P坐标为(0,)或(0,);(3).【解析】(1)根据AO=OB=2,AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP=2OC时,POC与AOE相似;(3)如图,取Q(,0)连接AQ,QE由OEQOBE,推出,推出EQ=BE,推出AE+BE=AE+QE,由AE+EQAQ,推出EA+EB的最小值就是线段AQ的长.【详解】(1)过点A作AHx轴于点H,AO=OB=2,A
20、OB=120°,AOH=60°,OH=1,AH=,A点坐标为:(-1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,抛物线的表达式为:y=x2-x;(2)如图,C(1,-),tanEOC=,EOC=30°,POC=90°+30°=120°,AOE=120°,AOE=POC=120°,OA=2OE,OC=,当OP=OC或OP=2OC时,POC与AOE相似,OP=,OP=,点P坐标为(0,)或(0,)(3)如图,取Q(,0)连接AQ,QE ,QOE=BOE,OEQOBE,EQ=BE,AE+BE=A
21、E+QE,AE+EQAQ,EA+EB的最小值就是线段AQ的长,最小值为【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题19、(1)证明见解析;(2)m=2或m=1【解析】(1)由=(-m)2-4×1×(m2-1)=40即可得;(2)将x=2代入方程得到关于m的方程,解之可得【详解】(1)=(m)24×1×(m21)=m2m2+4=40,方程有两个不相等的实数根;(2)将x=2代入方程,得:42m+m21=0,整理,得:m2
22、8m+12=0,解得:m=2或m=1【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值20、(1), ;(2)见解析;(3)【解析】(1)连结AD、BD,利用m求出角的关系进而求出BCD、ACD的度数;(2)连结,由所给关系式结合直径求出AP,OP,根据弦CD最短,求出BCD、ACD的度数,即可求出m的值(3)连结AD、BD,先求出AD,BD,AP,BP的长度,利用APCDPB和CPBAPD得出比例关系式,得出比例关系式结合勾股定理求出CP,PD,即可求出CD【详解】解:(1)如图1,连结、是的直径,
23、又, (2)如图2,连结,则,解得要使最短,则于,故存在这样的值,且;(3)如图3,连结、由(1)可得,同理,由得,由得,在中,由,得,【点睛】本题考查了相似三角形的判定与性质和锐角三角函数关系和圆周角定理等知识,掌握圆周角定理以及垂径定理是解题的关键21、(1)4%;(2)72°;(3)380人【解析】(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数÷总人数×360°,得C等级所在的扇形圆心角的度数;(2)将人数按级排列,可得该班学生体育测试成绩的中位数;(3)用(A级百分数+B级百分数)×1900,得这次考试中获得A级和B级的九年级学生共有的人数;(4)根据各等级人数多少,设计合格的等级,使大多数人能合格【详解】解:(1)九年级(1)班学生人数为13÷26%=50人,C级人数为50-13-25-2=10人,C等级所在的扇形圆心角的度数为10÷50×360°=72°,故答案为72°;(2)共50人,其中A级人数13人,B级人数25人,故该班学生体育测试成绩的中位数落在B等级内,故答案为B;(3)估计这次考试中获得A级和B级的九年级学生共有(26%+25÷50)×1900=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版四年级语文上册习作《写信》精美课件
- 【写作提升】细致状物(技法+素材+范文点评)(教案)四年级语文 部编版
- 福建省海滨学校、港尾中学2024年高三复习统一检测试题数学试题
- 2024年郑州客运从业资格证可以考几次
- 2024年湖南客运企业安全员考试试卷
- 2024年十堰道路客运从业资格证考试
- 2024年昆明客运从业资格证模拟考试试题题库及答案
- 2023年北京市初三一模道德与法治试题汇编:走向未来的少年章节综合
- 吉首大学《民间美术图形创新设计》2021-2022学年第一学期期末试卷
- 吉首大学《动物源食品加工专题》2021-2022学年第一学期期末试卷
- 办公室装修工程施工方案讲义
- 大学生职业生涯规划书药学专业
- 医院护理人文关怀实践规范专家共识
- 中国农业银行贷后管理办法
- MOOC 陶瓷装饰·彩绘-无锡工艺职业技术学院 中国大学慕课答案
- 小学科学苏教版四年级上册全册教案(2023秋新课标版)
- 信访纠纷化解预案
- 硅晶圆缺陷的化学性质与影响
- 《布的基本知识》课件
- (高清版)TDT 1031.6-2011 土地复垦方案编制规程 第6部分:建设项目
- 全国高中化学优质课大赛《氧化还原反应》课件
评论
0/150
提交评论