




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、材料力学材料力学 第三章第三章 材料的力学性质材料的力学性质 拉压杆的强度计算拉压杆的强度计算3. .1 应力应力应变曲线应变曲线3. .2 高温下材料的性质高温下材料的性质*3. .3 加载速率对材料力学性质的影响加载速率对材料力学性质的影响*3. .4 材料的疲劳强度材料的疲劳强度*3. .5 许用应力和安全因数许用应力和安全因数3. .6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算3. .7 简单拉压超静定问题简单拉压超静定问题3. .8 剪切和挤压的实用计算剪切和挤压的实用计算第三章第三章 材料的力学性质材料的力学性质 拉压杆的强度计算拉压杆的强度计算3. .1 应力应力应变
2、曲线应变曲线一、一、标准试样标准试样二、二、低碳钢在拉伸与压缩时的应力低碳钢在拉伸与压缩时的应力应变曲线应变曲线三、灰三、灰铸铁在拉伸与压缩时的应力铸铁在拉伸与压缩时的应力应变曲线应变曲线四、脆性材料在桥中的应用四、脆性材料在桥中的应用3. .1 应力应力应变曲线应变曲线材料的力学性能材料的力学性能 变形变形与与破坏破坏等方面的特性等方面的特性试验条件:试验条件: 2. .加载方式:加载方式:静载静载、动载、动载低碳钢低碳钢和和灰铸铁灰铸铁是力学性能比较典型的常用工程材料是力学性能比较典型的常用工程材料 在载荷作用下材料所表现出的在载荷作用下材料所表现出的 1. .环境温度:环境温度:常温常温
3、( (室温室温) )、低温、高温、低温、高温3. .1 应力应力应变曲线应变曲线一、标准试样一、标准试样 采用标准试样的目的:采用标准试样的目的: 为了比较不同材料的力学性能为了比较不同材料的力学性能3. .1 应力应力应变曲线应变曲线ld1. .拉伸试样拉伸试样l 标距标距dl10 dl5 ( (1) )圆形截面圆形截面一、一、标准试样标准试样3. .1 应力应力应变曲线应变曲线一、一、标准试样标准试样( (2) )矩形截面矩形截面ltbl 标距标距 或或Al3 .11 Al65. 5 1. .拉伸试样拉伸试样3. .1 应力应力应变曲线应变曲线( (1) )短圆柱形短圆柱形ld( (2)
4、) 立方形立方形2. .压缩试样压缩试样l = 1.5 3.0 d一、一、标准试样标准试样试验装置试验装置变形传感器变形传感器3. .1 应力应力应变曲线应变曲线二二、低碳钢在拉伸与压缩时的应力、低碳钢在拉伸与压缩时的应力应变曲线应变曲线1. .低碳钢在拉伸时的应力低碳钢在拉伸时的应力应变曲线应变曲线FFFFO lbseFp lafcbqhghdeEAFl ( (1) )拉伸图拉伸图( (载荷载荷变形图、变形图、F l 图图) )3. .1 应力应力应变曲线应变曲线 F l 图与图与 A 和和 l 有关有关 反映反映该试样该试样在在某一标距某一标距下的力学性能下的力学性能 材料的力学性能应与试
5、样的几何尺寸无关材料的力学性能应与试样的几何尺寸无关 将载荷将载荷变形图变形图改造改造成应力成应力应变图应变图3. .1 应力应力应变曲线应变曲线 ( ( 曲线曲线) ) 取:取:( (2) )应力应力应变曲线应变曲线 做法:做法:FFFFO lbseFp lafcbqhghdell AF 3. .1 应力应力应变曲线应变曲线二、低碳钢在拉伸时的应力应变曲线(2)应力应变曲线)ll ( ( 曲线曲线) ) 取:取:( (2) )应力应力应变曲线应变曲线 做法:做法: O bse pafcbqhghdeAF 3. .1 应力应力应变曲线应变曲线a. .弹性阶段弹性阶段( (Ob) ) 线弹性阶段
6、线弹性阶段( (Oa) )变形过程的四个阶段:变形过程的四个阶段: 应力与应变成正比应力与应变成正比 tan 即:即: E 胡克定律胡克定律常数常数 E O bse pafcbqhghde3. .1 应力应力应变曲线应变曲线a. .弹性阶段弹性阶段( (Ob) ) 线弹性阶段线弹性阶段( (Oa) )比例极限比例极限( ( p) )线弹性阶段最高点线弹性阶段最高点 a 所对应的所对应的应力值应力值变形过程的四个阶段:变形过程的四个阶段: E 弹性极限弹性极限( ( e) )弹性阶段最高点弹性阶段最高点 b 所对应的所对应的应力值应力值 O bse pafcbqhghde3. .1 应力应力应变
7、曲线应变曲线屈服应力屈服应力( ( s) )屈服阶段最低点屈服阶段最低点 d 所对应的所对应的应力值应力值变形过程的四个阶段:变形过程的四个阶段:b. .屈服阶段屈服阶段( (be) ) 又称为又称为屈服点屈服点 ( (流动阶段流动阶段) ) O bse pafcbqhghde3. .1 应力应力应变曲线应变曲线变形过程的四个阶段:变形过程的四个阶段:b. .屈服阶段屈服阶段( (be) )45 滑移线 ( (流动阶段流动阶段) ) O bse pafcbqhghde3. .1 应力应力应变曲线应变曲线抗拉强度抗拉强度( ( b) )强化阶段最高点强化阶段最高点 e 所对应的所对应的应力值应力
8、值变形过程的四个阶段:变形过程的四个阶段:c. .强化阶段强化阶段( (eg) ) O bse pafcbqhghde3. .1 应力应力应变曲线应变曲线d. .颈缩颈缩阶段阶段( (gh) ):变形过程的四个阶段:变形过程的四个阶段: ( (局部变形局部变形阶段阶段) ) O bse pafcbqhghde3. .1 应力应力应变曲线应变曲线在强化在强化阶段卸载时阶段卸载时( (3) )两个现象两个现象即:即:卸卸卸卸 E 使材料的比例极限提高,塑性变形减小的现象使材料的比例极限提高,塑性变形减小的现象2. .冷作硬化冷作硬化 卸载时的应力与应变成线性关系卸载时的应力与应变成线性关系1. .
9、卸载定律卸载定律 O bse pafcbfqhghpdepe3. .1 应力应力应变曲线应变曲线( (4) )两个塑性指标两个塑性指标a. .断后断后伸长率伸长率lAlA%100 lll 规定:规定: = 10 1,根据材料的性能与工程等级等因素而定根据材料的性能与工程等级等因素而定nu 保证材料保证材料安全工作安全工作的最大应力值的最大应力值保证材料安全工作的安全储备保证材料安全工作的安全储备 脆性材料脆性材料塑性材料塑性材料 bbssnn 第三章第三章 材料的力学性质材料的力学性质 拉压杆的强度计算拉压杆的强度计算3. .6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算一、强度条件
10、一、强度条件二、强度计算的三类问题二、强度计算的三类问题三、变形的计算三、变形的计算3. .6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算一、强度条件一、强度条件maxNmax AFmaxN AF对于对于等直杆等直杆3. .6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算二、二、强度计算的三类问题强度计算的三类问题 2. .选择选择截面截面: 1. .校核强度校核强度: 3. .确定确定最大最大( (许用许用) )载荷载荷: maxNmax AFmaxN FA maxN AF 已知已知 、F 和和 A,检验,检验已知已知 和和 F ,求,求已知已知 和和 A,求,求 maxN
11、 AFmaxF例例1:一直径:一直径d=14mm的圆杆,许用应力的圆杆,许用应力=170MPa,受轴向拉力,受轴向拉力P=2.5kN作作用,试校核此杆是否满足强度条件。用,试校核此杆是否满足强度条件。MPa.ANmaxmax162101441052623解:解:满足强度条件。满足强度条件。3. .6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算例例1 1 某冷镦机的曲柄滑块机构如图所示。镦压时某冷镦机的曲柄滑块机构如图所示。镦压时, ,连杆连杆解:解:1. .求轴力求轴力AB在水平位置。已知:在水平位置。已知:h=1.4b, , =90MPa, ,F=3780kN,由由2. .求横截面
12、面积求横截面面积不计自重。试确定连杆的矩形截面尺寸。不计自重。试确定连杆的矩形截面尺寸。 AB工件工件kN 3780N FFN AF ,得到,得到 N FA bhAFFB23mm 90103780 23mm 1042 3. .6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算3确定横截面的尺寸确定横截面的尺寸得到得到所以所以hbA mm 173 b由由bh4 . 1 例例1 1 某冷镦机的曲柄滑块机构如图所示。镦压时某冷镦机的曲柄滑块机构如图所示。镦压时, ,连杆连杆解:解:AB在水平位置。已知:在水平位置。已知:h=1.4b, , =90MPa, ,F=3780kN,不计自重。试确定连
13、杆的矩形截面尺寸。不计自重。试确定连杆的矩形截面尺寸。 AB工件工件bhAFFB24 . 1 b 23mm1042 1734 . 1 mm 242 3. .6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算说明:说明: 232263Nmm1042m 042. 0m 1090103780 FA2323Nmm1042mm 90103780 FA例例1 1 某冷镦机的曲柄滑块机构如图所示。镦压时某冷镦机的曲柄滑块机构如图所示。镦压时, ,连杆连杆解:解:AB在水平位置。已知:在水平位置。已知:h=1.4b, , =90MPa, ,F=3780kN,不计自重。试确定连杆的矩形截面尺寸。不计自重。
14、试确定连杆的矩形截面尺寸。计算时:若力的单位是计算时:若力的单位是N,长度单位是,长度单位是mm, 则应力单位是则应力单位是MPa。 例例2:图示三角形托架:图示三角形托架,其杆其杆AB是由两根是由两根等边角钢组成。已知等边角钢组成。已知P=75kN, =160MPa, 试选择等边角钢的型号试选择等边角钢的型号。CL2TU7解:解:由得MNPCAB075,:kNANAB 75101601036468710468742.mcm2选边厚为的 号等边角钢 其342359mmcm2,.A 3. .6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算三、变形的计算三、变形的计算EAlFlN 3. .
15、6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算例例2 已知已知: : l=2m, d=25mm, P=100kN, =30, E=210GPa, 解:解:1. .求内力求内力 求求 A。求得求得 取节点取节点A为研究对象为研究对象 :0 xF :0yF2N1NFF APFFN2N1yx l21ACBPd 0sinsin1N2N FF0coscos2N1N PFF cos2P 3. .6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算2. .求求变形变形3. .求求位移位移ACBAAA21l 121ll AAA cos22N1NPFF 例例2 已知已知: : l=2m, d=25
16、mm, P=100kN, =30, E=210GPa, 解:解: 求求 A。EAlF1N cos1l 22cos42dEPl mm 3 . 1 cos2 EAPl 2cos2EAPl cos222 dEPl mm30cos251021010210100222333 l21ACBPd 例例3 图示结构中图示结构中杆是直径为杆是直径为32mm的圆杆,的圆杆, 杆为杆为2No.5槽钢。槽钢。材料均为材料均为Q235钢,钢,E=210GPa。已知。已知F=60kN,试计算,试计算B点的位移。点的位移。1.8m2.4mCABFFFFFFFFFFFNNNNN33. 167. 10sin00cos0211Y
17、21X:mm.m.EALFLN781107811032410210031060671323931111mm66. 0m1066. 01093. 62102104 . 2106033. 134932222EALFLNF1NF2NFB解:解:1、计算各杆上的轴力、计算各杆上的轴力2、计算各杆的变形、计算各杆的变形3、计算、计算B点的位移点的位移(以切代弧以切代弧)BBB B4B32B2l1B1lmm87. 366. 081. 3|222222 BBBBBBmm81. 3|mm77. 2|mm08. 2|mm42. 1cos|mm04. 1sinsin|3322133142131141132 BBB
18、BBBctgBBBBBBLBBLBBLBBBB3. .6 轴向拉压杆的强度及变形计算轴向拉压杆的强度及变形计算第三章第三章 材料的力学性质材料的力学性质 拉压杆的强度计算拉压杆的强度计算3. .7 简单简单拉压超静定问题拉压超静定问题一、超静定问题的概念一、超静定问题的概念二、超静定问题的一般解法二、超静定问题的一般解法三、温度应力三、温度应力四、装配应力四、装配应力3. .7 简单拉压超静定问题简单拉压超静定问题一、超静定问题的概念一、超静定问题的概念平面力系:平面力系:平衡方程数:平衡方程数: 未知约束力数未知约束力数: FFFA12211 2 21 2 2共线力系共线力系 汇交力汇交力
19、平行力系平行力系3. .7 简单拉压超静定问题简单拉压超静定问题一、超静定问题的概念一、超静定问题的概念FFFA1221B334平衡方程数:平衡方程数: 未知约束力数未知约束力数: 1 2 22 3 4平面力系:平面力系:共线力系共线力系 汇交力汇交力 平行力系平行力系3. .7 简单拉压超静定问题简单拉压超静定问题静静 定定 问问 题题约束反力或内力约束反力或内力可以可以仅由平衡方程仅由平衡方程 求得的问题求得的问题即:即:静静 定定 问问 题题未知力数未知力数等于等于平衡方程数平衡方程数超静定次数超静定次数未知力数未知力数 减减 平衡方程数平衡方程数超静定问题超静定问题约束反力或内力约束反
20、力或内力不能不能仅由平衡方程仅由平衡方程 求得的问题求得的问题超静定问题超静定问题未知力数未知力数多于多于平衡方程数平衡方程数 ( (即即多余约束数多余约束数) )3. .7 简单拉压超静定问题简单拉压超静定问题二、超静定问题的一般解法二、超静定问题的一般解法 ( (1) ) 列出平衡方程;列出平衡方程; ( (3) ) 列出物理方程列出物理方程( (即胡克定律即胡克定律) ); ( (2) ) 根据杆或杆系的变形几何关系,根据杆或杆系的变形几何关系,建立变形几何方程建立变形几何方程 ( (变形协调方程、变形协调条件变形协调方程、变形协调条件) ); ( (4) ) 联立求解。联立求解。3.
21、.7 简单拉压超静定问题简单拉压超静定问题例例3 图示两端固定直杆,已知:图示两端固定直杆,已知:F, l1,E1,A1,l2, 解:为一次超静定问题解:为一次超静定问题1. .静力平衡方程静力平衡方程 E2, A2,求:,求:FAy,FBy。 2. .变形几何方程变形几何方程:0 yF21ll ( (1) )( (2) )3. .物理方程物理方程( (3) )FAyFN1ABlll12CFFAyBy1F2FByFN2 1111N1AElFl 2222N2AElFl 0 FFFByAy ,111AElFAy 222AElFBy 3. .7 简单拉压超静定问题简单拉压超静定问题4. .联立求解联
22、立求解,得到,得到讨论:讨论:当当E1= E2,A1= A2时时超静定问题的特点:超静定问题的特点: 未知力未知力不仅与载荷的大小有关,不仅与载荷的大小有关,FllFlllFFllFlllFByAy12112212 , 1222112111221 ,1lAElAEFFlAElAEFFByAy 还与载荷的还与载荷的作用位置作用位置以及杆的以及杆的材料材料和和几何尺寸几何尺寸有关有关。例例3 图示两端固定直杆,已知:图示两端固定直杆,已知:F, l1,E1,A1,l2, E2, A2,求:,求:FAy,FBy。 3. .7 简单拉压超静定问题简单拉压超静定问题三、温度应力三、温度应力1. .温度应
23、力的概念温度应力的概念FFxx静定结构:静定结构:超静定结构:超静定结构:温度应力温度应力由于温度的变化所产生的应力由于温度的变化所产生的应力0 T0 T是一种初应力是一种初应力初初 应应 力力在载荷作用前构件内已经具有的应力在载荷作用前构件内已经具有的应力3. .7 简单拉压超静定问题简单拉压超静定问题三、温度应力三、温度应力2. .计算方法计算方法 按超静定问题求解按超静定问题求解 物理方程应考虑温度对变形的影响,即物理方程应考虑温度对变形的影响,即lTlT 式中式中 材料的线膨胀系数材料的线膨胀系数 T = T2 - - T1温度的改变量温度的改变量 l 杆的长度杆的长度3. .7 简单
24、拉压超静定问题简单拉压超静定问题四、装配应力四、装配应力1. .装配应力的概念装配应力的概念装配后为:装配后为: 静定结构静定结构 超静定结构超静定结构装配应力装配应力由于装配后所产生的应力由于装配后所产生的应力也是一种初应力也是一种初应力3. .7 简单拉压超静定问题简单拉压超静定问题四、装配应力四、装配应力2. .计算方法计算方法 按超静定问题求解按超静定问题求解3. .应用应用第三章第三章 材料的力学性质材料的力学性质 拉压杆的强度计算拉压杆的强度计算3. .8 剪切和挤压的实用计算剪切和挤压的实用计算一、定义一、定义二、工程实例二、工程实例三、剪切的实用计算三、剪切的实用计算四、挤压的
25、实用计算四、挤压的实用计算3. .8 剪切和挤压的实用计算剪切和挤压的实用计算一、定义一、定义 很近的外力作用下,使得杆件发生很近的外力作用下,使得杆件发生相对错相对错 动动的变形现象。的变形现象。剪切变形剪切变形FF在一对大小相等、方向相反、作用线相距在一对大小相等、方向相反、作用线相距简称简称剪切剪切。吊钩吊钩二、二、工程实例工程实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算键键二、二、工程实例工程实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算键和螺栓键和螺栓二、二、工程实例工程实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算键和螺栓键和螺栓二、二、工程实例工程
26、实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算销钉销钉二、二、工程实例工程实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算销钉销钉二、二、工程实例工程实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算销钉销钉二、二、工程实例工程实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算销钉销钉二、二、工程实例工程实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算三、剪切的实用计算三、剪切的实用计算 单剪单剪mmFFmmFFnnmm 双剪双剪FF3. .8 剪切和挤压的实用计算剪切和挤压的实用计算1. .几个名词几个名词剪剪 切切 面面单单 剪剪被联接件被联接件接接
27、头头联联 接接 件件双双 剪剪铆钉、销钉、螺栓、键等铆钉、销钉、螺栓、键等钢板、挂钩等钢板、挂钩等被联接件被联接件 + + 联接件联接件发生相对错动的截面发生相对错动的截面具有具有一个剪切面一个剪切面的剪切现象的剪切现象具有具有两个剪切面两个剪切面的剪切现象的剪切现象3. .8 剪切和挤压的实用计算剪切和挤压的实用计算单剪单剪工程实例工程实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算双剪双剪工程实例工程实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算双剪双剪工程实例工程实例3. .8 剪切和挤压的实用计算剪切和挤压的实用计算四剪四剪工程实例工程实例3. .8 剪切和挤压的实用
28、计算剪切和挤压的实用计算2. .剪切的实用计算剪切的实用计算剪力剪力( (FQ ) )作用线在剪切面上的内力作用线在剪切面上的内力( (1) )剪力剪力 方向:方向:与剪切面的法线方向垂直与剪切面的法线方向垂直 :0 xFmmFFmmFFQFF Q利用截面法利用截面法3. .8 剪切和挤压的实用计算剪切和挤压的实用计算0Q FF( (2) )切应力切应力式中式中 平均切应力,平均切应力,即即假定:假定:切应力在剪切面上切应力在剪切面上均匀分布均匀分布 工程上通常采用工程上通常采用“实用计算实用计算”( (假定计算假定计算) ) AQ剪切面面积剪切面面积切应力方向:切应力方向:与与FQ相同相同Q
29、QAF 又称为又称为名义切应力名义切应力3. .8 剪切和挤压的实用计算剪切和挤压的实用计算( (3) )剪切强度条件剪切强度条件式中式中 材料的许用切应力材料的许用切应力QQ AF3. .8 剪切和挤压的实用计算剪切和挤压的实用计算四、挤压的实用计算四、挤压的实用计算1. .挤压的概念挤压的概念FF挤压面FF3. .8 剪切和挤压的实用计算剪切和挤压的实用计算几个名词:几个名词:挤挤 压压 力力( (Fbs) )挤压应力挤压应力( ( bs) ) 触面上触面上相互压紧的现象相互压紧的现象挤压面挤压面挤挤 压压在外力作用下,联接件与被联接件之间在在外力作用下,联接件与被联接件之间在接接相互压紧
30、部分的接触面相互压紧部分的接触面挤压面上所受到的压力挤压面上所受到的压力与挤压力所对应的应力与挤压力所对应的应力3. .8 剪切和挤压的实用计算剪切和挤压的实用计算2. .挤压的实用计算挤压的实用计算( (1) )挤压力挤压力FF bs bsFbs bsdtFbs挤压面剪切面 bsFbsFFt3. .8 剪切和挤压的实用计算剪切和挤压的实用计算( (2) )挤压应力挤压应力 工程上通常采用工程上通常采用“实用计算实用计算”( (假定计算假定计算) )即即假定:假定:挤压应力在挤压应力在计算挤压面计算挤压面上均匀分布上均匀分布bsbsbsAF bsdtFbs挤压面剪切面计算挤压面式中式中 bs名
31、义挤压应力名义挤压应力 与实际最大应力接近与实际最大应力接近 Abs计算挤压面计算挤压面面积面积3. .8 剪切和挤压的实用计算剪切和挤压的实用计算关于计算挤压面面积的计算:关于计算挤压面面积的计算:( (a) )圆柱形挤压面:计算挤压面圆柱形挤压面:计算挤压面 = = 直径平面直径平面 bsdtFbs挤压面剪切面计算挤压面3. .8 剪切和挤压的实用计算剪切和挤压的实用计算关于计算挤压面面积的计算:关于计算挤压面面积的计算:( (a) )圆柱形挤压面:计算挤压面圆柱形挤压面:计算挤压面 = = 直径平面直径平面( (b) )矩形挤压面:矩形挤压面: 计算挤压面计算挤压面 = = 矩形平面矩形平面h2_ bbslbh2_ bsFbsFbs挤压面挤压面剪切面剪切面mmmm FQ= = 投影面投影面= = 挤压面挤压面3. .8 剪切和挤压的实用计算剪切和挤压的实用计算( (3) )挤压强度条件挤压强度条件式中式中 bs 材料的许用挤压应力材料的许用挤压应力bsbsbsbs AF3. .8 剪切和挤压的实用计算剪切和挤压的实用计算注意:注意:( (b) )如果被联接件的截面在连接处遭到削弱,还应对被如果被联接件的截面在连接处遭到削弱,还应对被( (a) )当被联接件的许用挤压应力小于联接件的许用挤压当被联接件的许用挤压应力小于联接件的许用挤压 应力时,须对被联接件进行挤压强度校核;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州国际旅游服务合同样本
- 商铺租赁合同样本:门面租赁全新范本
- 寒假临时工雇佣合同书样本
- 游戏品牌代言合同样本
- 长租公寓租赁合同全文
- 新媒体广告推广合同模板
- 办公室简单装修合同范本
- 个人贷款合同电子版模板
- 企业间的战略合作框架合同范本
- 课件人物插图小学生
- 语文学习任务群的解读及设计要领
- 2024年山东省高考生物试卷真题(含答案解析)
- 光伏发电站项目安全技术交底资料
- 富血小板血浆(PRP)临床实践与病例分享课件
- 跨文化交际教程 课件 杜平 Unit 1 Cultural Awareness and Intercultural Communication-Unit 3 Nonverbal Communication
- 光伏工程施工组织设计
- 社保知识竞赛考试题及答案
- 华为HCSA-Presales-IT售前认证备考试题及答案
- 2024-2030年中国纤维板行业发展趋势与投资战略研究报告
- 小学二年级上册数学思维训练题100道及答案解析
- 2024年品酒师职业技能大赛理论考试题库及答案
评论
0/150
提交评论