版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、由物系的多样化,引出仅由杆件组成的系统由物系的多样化,引出仅由杆件组成的系统桁架桁架 3.5 3.5 桁架桁架桁架中杆件与杆件相连接的桁架中杆件与杆件相连接的铰链铰链,称为,称为节点节点。 由许多杆件在其由许多杆件在其端点处相互连接端点处相互连接起来,成为起来,成为几何形状不变几何形状不变的结构,的结构,称之为称之为“ “ 桁架桁架”。桁架的定义桁架的定义上弦杆上弦杆下弦杆下弦杆竖竖杆杆斜斜杆杆节点节点工程中的桁架结构工程中的桁架结构本节我们只研本节我们只研 究平面桁架究平面桁架力学中的桁架模型力学中的桁架模型力学中的桁架模型力学中的桁架模型力学中的简单桁架模型力学中的简单桁架模型(a)( 三
2、角形有稳定性三角形有稳定性:悬臂型简单桁架悬臂型简单桁架简支型简单桁架简支型简单桁架1、简单桁架、简单桁架在基础或一个铰结三角形上,每次在基础或一个铰结三角形上,每次用不在一条直线上的两个链杆连接一个新节点,按用不在一条直线上的两个链杆连接一个新节点,按照这个规律组成的桁架。照这个规律组成的桁架。 2、联合桁架联合桁架由简单桁架按基本组成规则构成桁架由简单桁架按基本组成规则构成桁架3、复杂桁架、复杂桁架非上述两种方式组成的静定桁架非上述两种方式组成的静定桁架 以各个节点为研究对象的求解方法,称以各个节点为研究对象的求解方法,称节点法节点法只要是能靠二元体的方式扩大的结构,就可用只要是能靠二元体
3、的方式扩大的结构,就可用节点法求出全部杆内力节点法求出全部杆内力一般来说节点法适合计算简单桁架。一般来说节点法适合计算简单桁架。注意:注意: 隔离体只包含一个节点时,隔离体上受到的是隔离体只包含一个节点时,隔离体上受到的是平面汇交平面汇交力系力系,应用两个独立的投影方程求解,固一般应先截取只包,应用两个独立的投影方程求解,固一般应先截取只包含两个未知轴力杆件的节点。含两个未知轴力杆件的节点。FFNXYFFFllxly lylxlFxFyFNFN+0BX =420BYP-=0, 5 kNBABXNY=解解:研究整体,求支座反力一、节点法一、节点法已知:如图 P=10kN,求各杆内力?例例依次取A
4、、C、D节点研究,计算各杆内力。021cos300SS+=01sin300ANS+=)(kN10,kN66. 812表示杆受压解得SS0,FX MA=0Fy=0NA+YB-P=00,FX0,FY0041cos30cos300SS-=00314sin30sin300SSS-=11SS 代入34: 10 kN, 10 kNSS= -解得520SS-=0,FX0,FY0,FX22SS=代入后58.66 kNS 解 得适用范围:适用范围:联合桁架的计算和简单桁架中少数指定杆件联合桁架的计算和简单桁架中少数指定杆件的计算。的计算。 1 1、隔离体上的力是一个平面任意力系、隔离体上的力是一个平面任意力系,
5、 ,可列可列出三个独立的平衡方程。出三个独立的平衡方程。 2 2、取隔离体时一般切断的未知轴力的杆件不、取隔离体时一般切断的未知轴力的杆件不宜多于三根。宜多于三根。 被截三杆应不交于一点或不互相平行。被截三杆应不交于一点或不互相平行。截面法截面法:用截面切断拟求内力的杆件,从桁架用截面切断拟求内力的杆件,从桁架中截出一部分作为隔离体,来计算杆件内力。中截出一部分作为隔离体,来计算杆件内力。解:解: 研究整体求支反力研究整体求支反力 二、截面法二、截面法 例例 已知:如图已知:如图, ,h h, ,a a, ,P P 求:求:4 4,5 5,6 6杆的内力。杆的内力。选截面选截面I-I I-I
6、,取左半部研究,取左半部研究IIA由由MA=0-S4h-YAa=0S4= -Pa/hYA+S5sin-P=0 S5=0S6+S5cos+S4+XA=0 S6=Pa/hXA=0MB=0FX=0YA=P-YA3a+P2a+Pa=0FY=0FX=0说明说明 : 节点法:用于设计,计算全部杆内力节点法:用于设计,计算全部杆内力 截面法:用于校核,计算部分杆内力截面法:用于校核,计算部分杆内力 先把杆都设为拉力先把杆都设为拉力,计算结果为负时计算结果为负时,说明是压力说明是压力,与所与所设方向相反。设方向相反。三杆节点无载荷、其中两杆在三杆节点无载荷、其中两杆在一条直线上,另一杆必为零杆一条直线上,另一
7、杆必为零杆12SS= -且两杆节点无载荷、且两杆不在两杆节点无载荷、且两杆不在一条直线上时,该两杆是零杆。一条直线上时,该两杆是零杆。三、特殊杆件的内力判断三、特殊杆件的内力判断120SS= 前几章我们把接触表面都看成是绝对光滑的,忽略了物前几章我们把接触表面都看成是绝对光滑的,忽略了物体之间的摩擦,事实上完全光滑的表面是不存在的,一般情况体之间的摩擦,事实上完全光滑的表面是不存在的,一般情况下都存在有摩擦。下都存在有摩擦。 例例 6-2 6-2 摩擦摩擦平衡必计摩擦平衡必计摩擦 摩擦的类别:摩擦的类别:滑动摩擦由于物体间相对滑动或有相对滑动趋势引起的摩擦。滚动摩擦由于物体间相对滚动或有相对滚
8、动趋势引起的摩擦。 当两个相互接触的物体具有相对滑动或相对滑动趋势时,彼此间产生的阻碍相对滑动或相对滑动趋势的力,称为滑动摩擦力。摩擦力作用于相互接触处,其方向与相对滑动的趋势或相对滑动的方向相反,它的大小根据主动力作用的不同,可以分为三种情况,即静滑动摩擦力、最大静滑动摩擦力和动滑动摩擦力。若仅有滑动趋势而没有滑动时产生的摩擦力称为静滑动摩擦力;若存在相对滑动时产生的摩擦力称为动滑动摩擦力。3.6.1 滑动摩擦1、定义定义:相接触物体,产生相对滑动(趋势)时,其接触面 产生阻止物体运动的力叫滑动摩擦力。 ( 就是接触面对物体作用的切向约束反力) 2、状态状态: 静止: 临界:(将滑未滑) 滑
9、动:PF )(不固定值FPNfFmaxNfF一、静滑动摩擦力一、静滑动摩擦力所以增大摩擦力的途径为:加大正压力N, 加大摩擦系数f (f 静滑动摩擦系数)(f 动摩擦系数)二、动滑动摩擦力二、动滑动摩擦力:(与静滑动摩擦力不同的是产生了滑动) 大小: (无平衡范围)动摩擦力特征动摩擦力特征:方向:与物体运动方向相反 定律: (f 只与材料和表面情况有 关,与接触面积大小无关。)max0FF 0XNfFmaxNfFNfF3、 特征:特征: 大小:(平衡范围)满足静摩擦力特征静摩擦力特征:方向:与物体相对滑动趋势方向相反 定律:( f 只与材料和表面情况有 关,与接触面积大小无关。)maxFm三、
10、摩擦角:三、摩擦角: 定义:当摩擦力达到最大值 时其全反力 与法线的夹角 叫做摩擦角摩擦角。fNNfNFmmaxtg计算:qfffFRFRAA (1)如果作用于物块的全部主动力的合力FR的作用线在摩擦角f之内,则无论这个力怎样大,物块必保持静止。这种现象称为自锁现象。因为在这种情况下,主动力的合力FR与法线间的夹角q f,因此, FR和全约束反力FRA必能满足二力平衡条件,且q f,而 f ,支承面的全约束反力FRA和主动力的合力FR不能满足二力平衡条件。应用这个道理,可以设法避免发生自锁现象。四、自锁四、自锁 定义:当m时,不论主动力的合力FQ多大,全约束力总能与其平衡,所以物体将保持静止不
11、动,这种现象称为自锁。 当 时,永远平衡(即自锁)mm自锁条件:五、五、考虑滑动摩擦时的平衡问题考虑滑动摩擦时的平衡问题 考虑摩擦时的平衡问题,一般是对临界状态求解,这时可考虑摩擦时的平衡问题,一般是对临界状态求解,这时可列出列出 的补充方程。其它解法与平面任意力系相同。的补充方程。其它解法与平面任意力系相同。只是平衡常是一个范围只是平衡常是一个范围NfFmax(从例子说明)。(从例子说明)。例例1 已知: =30,G =100N,f =0.2 求:物体静止时,水平力Q的平衡范围。当水平力Q = 60N时,物体能否平衡? 五、五、考虑滑动摩擦时的平衡问题考虑滑动摩擦时的平衡问题解解:先求使物体
12、不致于上滑的 图(1)maxQNfFGQNYFGQXmaxmaxmaxmax :0cossin , 0 0sincos , 0 补充方程由tg1tg :maxffGQ解得tgtg1tgtgmm G)(tgmG tgtg1tgtg)(tg:mmm应用三角公式同理同理: 再求使物体不致下滑的 图(2) minQ) ( tg tg1tgsin coscossinmminGffGGffQ解得:平衡范围应是平衡范围应是maxminQQQ 由实践可知,使滚子滚动比使它滑动省力,下图的受力分析看出一个问题,即此物体平衡,但没有完全满足平衡方程。)(0, 00, 00, 0不成立rQMNPYFQXAQ与与F形
13、成主动力偶使前滚形成主动力偶使前滚 出现这种现象的原因是,出现这种现象的原因是,实际接触面并不是刚体,它们实际接触面并不是刚体,它们在力的作用下都会发生一些变在力的作用下都会发生一些变形,如图:形,如图:六、六、 滚动摩擦滚动摩擦此力系向A点简化 滚阻力偶M随主动力偶(Q , F)的增大而增大; 有个平衡范围;滚动滚动 摩擦摩擦 与滚子半径无关; 滚动摩擦定律: ,d 为滚动摩擦系数。max0MM maxMNMdmax滚阻力偶与主动力偶(滚阻力偶与主动力偶(Q,F)相平衡)相平衡d阻止物体间相互滚动的力偶阻止物体间相互滚动的力偶M称为滚动摩擦力偶,简称滚阻力偶称为滚动摩擦力偶,简称滚阻力偶滑动
14、摩擦力是阻力滑动摩擦力是阻力滑动摩擦力是驱动力滑动摩擦力是驱动力目录目录4-1 4-1 材料力学的任务材料力学的任务结构物(机械)由构件(零件)组成。一、基本概念一、基本概念1.1.结构(机械)和构件(零件)结构(机械)和构件(零件) 4-1 4-1 材料力学的任务材料力学的任务主架、吊臂、操作室、配重。荷载未作用时荷载去除后荷载作用下F荷载去除后弹性变形弹性变形塑性变形塑性变形 4-1 4-1 材料力学的任务材料力学的任务2.2.变形变形: :弹性变形和塑性变形 材料力学是在弹性变形的范围内研究构件的承载能力。 弹性变形弹性变形 随外力解除而消失随外力解除而消失塑性变形塑性变形( (残余变形
15、残余变形) ) 外力解除后不能消失外力解除后不能消失3.3.构件的承载能力构件的承载能力 . 具有足够的强度强度构件抵抗破坏的能力。FFaFF钢 筋b破坏形式:断裂或者产生明显的塑性变形 . 具有足够的刚度刚度荷载作用下构件的弹性变形不超过工程允许范围。荷载未作用时荷载去除后荷载作用下F 5-1 5-1 材料力学的任务材料力学的任务理想中心压杆 . 满足稳定性稳定性要求对于理想中心压杆是指荷载作用下杆件能保持原有形式的平衡。 1.材料力学的任务:满足上述强度、刚度和稳定性强度、刚度和稳定性要求同时,为构件确定合理的截面尺寸和形状,尽可能选用合适材料和降低材料消耗量,以节约投资成本。(安全与安全
16、与经济经济)。材料力学包含的两个方面理论分析实验研究测定材料的力学性能;解决某些不能全靠理论分析的问题二、材料力学的任务二、材料力学的任务A4复印纸在自重作用下产生明显变形折叠后变形明显减小2.生活实例4.2 4.2 变形固体的基本假设变形固体的基本假设1 1、连续性假设:、连续性假设:认为整个物体体积内毫无空隙地充满物质认为整个物体体积内毫无空隙地充满物质 在外力作用下,一切固体都将发生变形,在外力作用下,一切固体都将发生变形,故称为变形固体。故称为变形固体。在材料力学中,对变形固体在材料力学中,对变形固体作如下假设:作如下假设:目录目录灰口铸铁的显微组织灰口铸铁的显微组织球墨铸铁的显微组织
17、球墨铸铁的显微组织2 2、均匀性假设:、均匀性假设:认为物体内的任何部分,其力学性能相同认为物体内的任何部分,其力学性能相同4.2 4.2 变形固体的基本假设变形固体的基本假设普通钢材的显微组织普通钢材的显微组织优质钢材的显微组织优质钢材的显微组织目录目录4.2 4.2 变形固体的基本假设变形固体的基本假设A AB BC CF F12 如右图,如右图,远小于构件的最小尺寸,远小于构件的最小尺寸,所以通过节点平衡求各杆内力时,把支所以通过节点平衡求各杆内力时,把支架的变形略去不计。计算得到很大的简架的变形略去不计。计算得到很大的简化。化。4 4、小变形假设、小变形假设3 3、各向同性假设:、各向
18、同性假设:认为在物体内各个不同方向的力学性能相同认为在物体内各个不同方向的力学性能相同(沿不同方向力学性能不同的材料称为各向异性(沿不同方向力学性能不同的材料称为各向异性材料。如木材、胶合板、纤维增强材料等)材料。如木材、胶合板、纤维增强材料等)认为构件的变形极其微小,认为构件的变形极其微小,比构件本身尺寸要小得多比构件本身尺寸要小得多。构件的分类:构件的分类:杆件、板壳杆件、板壳* *、块体、块体* *4.3 4.3 杆件变形的基本形式杆件变形的基本形式材料力学主要研究材料力学主要研究杆件杆件等截面直杆等截面直杆等直杆等直杆一、材料力学的研究对象一、材料力学的研究对象直杆直杆 轴线为直线的杆
19、轴线为直线的杆曲杆曲杆 轴线为曲线的杆轴线为曲线的杆等截面杆等截面杆横截面的大小横截面的大小 形状不变的杆形状不变的杆变截面杆变截面杆横截面的大小横截面的大小 或形状变化的杆或形状变化的杆目录目录轴线轴线:杆件各横截面的连线杆件各横截面的连线一、一、拉伸(或压缩)拉伸(或压缩):由大小相等、方向相反、作用线:由大小相等、方向相反、作用线与杆件轴线重合的一对外力引起。使杆件产生轴向伸长与杆件轴线重合的一对外力引起。使杆件产生轴向伸长(或压缩)变形。(或压缩)变形。4.3 杆件的受力与变形形式杆件的受力与变形形式杆件变形形式杆件变形形式轴向拉伸(或压缩)、剪切、扭转、弯曲、组轴向拉伸(或压缩)、剪
20、切、扭转、弯曲、组合变形合变形FF拉拉力力拉伸情况图拉伸情况图4.3 杆件的受力与变形形式杆件的受力与变形形式二、二、剪切剪切:由大小相等,方向相反,相互平行,:由大小相等,方向相反,相互平行,沿垂直于杆轴线横向作用的一对外力引起。使杆沿垂直于杆轴线横向作用的一对外力引起。使杆件的两部分沿外力作用方向发生相对错动的变形件的两部分沿外力作用方向发生相对错动的变形。FF外外力力4.3 杆件的受力与变形形式杆件的受力与变形形式三、扭转三、扭转:由大小相等,转向相反,作用面垂直:由大小相等,转向相反,作用面垂直于杆轴的两个力偶引起。使杆件的任意两个横截于杆轴的两个力偶引起。使杆件的任意两个横截面发生绕
21、轴线的相对转动。面发生绕轴线的相对转动。TT力力偶偶四、弯曲四、弯曲:由垂直于杆件轴线的横向力,或:由垂直于杆件轴线的横向力,或者由作用于包含杆轴纵平面内的一对大小相者由作用于包含杆轴纵平面内的一对大小相等、方向相反的力偶引起。使杆件发生弯曲等、方向相反的力偶引起。使杆件发生弯曲变形。变形。MM力力偶偶弯曲变形弯曲变形4.3 杆件的受力与变形形式杆件的受力与变形形式五五、组合变形组合变形:由上述变形两种或两种以上共同作用:由上述变形两种或两种以上共同作用形成的受力与变形。形成的受力与变形。TTFF4.3 杆件的受力与变形形式杆件的受力与变形形式 作用在杆件上的外力大小相等、方向作用在杆件上的外
22、力大小相等、方向相反、相反、合力的作用线合力的作用线与杆件轴线重合,杆件与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。变形是沿轴线方向的伸长或缩短。拉(压)杆的受力简图拉(压)杆的受力简图F FF F拉伸拉伸F FF F压缩压缩l5.1 5.1 轴向拉伸与压缩的概念和实例轴向拉伸与压缩的概念和实例受力受力特点与变形特点:特点与变形特点:二、内力二、内力 这种因外力作用而引起的杆件各点间产生相对位移的力称为附加内力附加内力,即材料力学要研究的内力。1. 1. 内力的概念内力的概念2. 2. 内力的特点内力的特点 内力随着外力的产生而产生内力随着外力的产生而产生 材料力学的内力不同于静力学的内
23、力材料力学的内力不同于静力学的内力 5-2 5-2 外力、内力与截面法外力、内力与截面法求内力的一般方法求内力的一般方法截面法截面法(1)截开;)截开;(3 3)代替;)代替;步骤:步骤:F F mmFN(a) F F mm(b) mmFNx8-2 8-2 轴力与轴力轴力与轴力图图(2)丢弃;)丢弃;可看出:杆件任一横截面上的内力,其作用线均与可看出:杆件任一横截面上的内力,其作用线均与杆件的轴线重合,因而称之为杆件的轴线重合,因而称之为轴力轴力,用记号,用记号FN表示。表示。 FFNF F mm(c) FN(a) F F mm(b) mmFNx(3)平衡。)平衡。引起伸长变形的轴力为正引起伸
24、长变形的轴力为正拉力(背离截面);拉力(背离截面);引起压缩变形的轴力为负引起压缩变形的轴力为负压力(指向截面)。压力(指向截面)。轴力的符号规定轴力的符号规定:F F mm(c) FN(a) F F mm(b) mmFNxFN mm(c) FN(a) F F mm(b) mmFxF 用截面法法求内力的过程中,在截面取分离体用截面法法求内力的过程中,在截面取分离体前,作用于物体上的外力(荷载)不能任意移动或前,作用于物体上的外力(荷载)不能任意移动或用静力等效的相当力系替代。用静力等效的相当力系替代。注意:注意:(a) F F F F (b)ABCDE11223344BFCFDF图示悬臂杆,沿
25、轴线方向的作用力为:图示悬臂杆,沿轴线方向的作用力为:FB=40kN, FC =55kN, FD =25kN, FE =20kN 。试求图示指定截面的内力。试求图示指定截面的内力。1、先求约束反力、先求约束反力AF , 0ixF0EDCBAFFFFFEDCBAFFFFFkN1020255540EFABCDEBFCFDFEF2、求指定截面的轴力、求指定截面的轴力AF111NF2NF截面截面1-1: , 0ixF01NAFFkN101NFAF22BF截面截面2-2: , 0ixF02NBAFFFkN502NFAFBF33CF3NF截面截面3-3: , 0ixF03NCBAFFFFkN53NFEF4
26、44NF截面截面4-4: , 0ixF04NEFFkN204NF用用 平行于杆轴线的坐标表示横截面的位置,用垂直于杆平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力数值,从而绘出表示轴力与轴线的坐标表示横截面上的轴力数值,从而绘出表示轴力与横截面位置关系的图线,称为横截面位置关系的图线,称为 轴力图轴力图 . xFNO反映出轴力与截面位置变化反映出轴力与截面位置变化关系,较直观;关系,较直观;确定出最大轴力的数值及其确定出最大轴力的数值及其所在横截面的位置,即确定危所在横截面的位置,即确定危险截面位置,为强度计算提供险截面位置,为强度计算提供依据。依据。3.1kN2.
27、9kN3.1kN2.9kN6kN一等直杆其受力情况如图所示,一等直杆其受力情况如图所示, 作杆的轴力图作杆的轴力图.CABD600300500400E40kN55kN 25kN20kNCABD600300500400E40kN55kN 25kN20kNCABDE40kN55kN 25kN20kNR040552520010kN,xFRRCABDE40kN55kN 25kN20kN10 01 1 RFN10(kN)( )N1FR R40kNFN220kNCABDE40kN55kN 25kNR20 04 40 02 2 RFN4050(kN)( )N2FRFN320kN25kNCABDE40kN55
28、kN 25kN20kNR3020253NF)()kN(N 5 53 3F20kNFN440kN55kN 25kN20kNR420(kN)(+)N4FFN1=10kN (拉力)(拉力)FN2=50kN (拉力)(拉力) FN3= - 5kN (压力)(压力)FN4=20kN (拉力)(拉力)CABD600300500400E40kN55kN 25kN20kN)(FkNNmax5 50 0 5010520+xOFN(kN)1. 与杆平行对齐画2. 正确画出内力沿轴线的变化规律3. 标明内力的符号4. 标明内力单位CABD600300500400E40kN55kN 25kN20kN5010520+x
29、OFN(kN) F AM(1)平均应力)平均应力 ( A上平均内力集度上平均内力集度)(2)实际应力)实际应力应力的表示应力的表示:5.3 拉压杆应力拉压杆应力AFp平均AFAFpAddlim0P-总应力总应力(3)应力分解)应力分解p M 垂直于截面的应力称为垂直于截面的应力称为“正应力正应力”位于截面内的应力称为位于截面内的应力称为“剪应力剪应力”应力单位应力单位为Pa = N/m2 cospsinp22p 材料的均匀连材料的均匀连续性假设,可知所续性假设,可知所有纵向纤维的力学有纵向纤维的力学性能相同性能相同 轴向拉压时,轴向拉压时,横截面上只有正应横截面上只有正应力,且均匀分布力,且均
30、匀分布 NdAFAA NFA 横截面上有正横截面上有正应力无切应力应力无切应力一、拉压杆横截面上的应力一、拉压杆横截面上的应力 FABCFF3000400037024021 kNN50501 1 FFkNN1 15 50 03 32 2 FF 50kN150kNMPa.N/m.2N8 87 70 01 10 08 87 70 02 24 40 02 24 40 05 50 00 00 00 06 61 11 11 1 AF MPa.N/m.2N1 11 110101 11 137370 037370 01500001500006 62 22 22 2 AF max FABCFF30004000
31、37024021 MPa.N/m.2N8 87 70 01 10 08 87 70 02 24 40 02 24 40 05 50 00 00 00 06 61 11 11 1 AF MPa.N/m.2N1 11 110101 11 137370 037370 01500001500006 62 22 22 2 AF 5.3.1 5.3.1 圣维南原理圣维南原理 外力作用于杆端的方式不同,只会使与杆端距离外力作用于杆端的方式不同,只会使与杆端距离不大于横向尺寸的范围内受到影响。不大于横向尺寸的范围内受到影响。 5.3.2 5.3.2 应力集中应力集中 截面突变处附近区域,应力出现较大峰值的现象
32、。截面突变处附近区域,应力出现较大峰值的现象。 应力集中系数应力集中系数 maxtnK 二、拉压杆斜截面上的应力二、拉压杆斜截面上的应力 斜截面上总应力斜截面上总应力 斜截面正应力斜截面正应力 斜截面切应力斜截面切应力 N0cos/cosFFpAA 20coscosp0sinsin22p 1. 1. 纵纵向变变形及线应变线应变线应变(相对变形):单位长度的线变形线应变(相对变形):单位长度的线变形绝对变形:绝对变形:lllllPP ll ll四、四、 拉、压杆的变形及胡克定理拉、压杆的变形及胡克定理 3 3、胡克定律胡克定律实验证明:实验证明:当正应力小于某一极限值当正应力小于某一极限值(比例
33、极限)(比例极限)时,正应力时,正应力与正应变存在线性关系,即:与正应变存在线性关系,即: E 称为胡克定律,称为胡克定律,E E为弹性模量,为弹性模量,常用单位:常用单位:GPaGPa、PaPa=E=E材料抵抗弹性变形的能力。材料抵抗弹性变形的能力。同理,切应力小于某一极限值时,切应力与切应同理,切应力小于某一极限值时,切应力与切应变也存在线性关系,即:变也存在线性关系,即:此为剪切胡克定律,此为剪切胡克定律,G为剪切模量,常用单位为剪切模量,常用单位:GPa、MPa1GPa=103MPa; 1MPa=1N/mm2=106 paGEAlFlNAFN ll上式就是轴向拉压变形计算公式,也可以说
34、上式就是轴向拉压变形计算公式,也可以说是胡克定律。是胡克定律。五、轴向拉压变形计算五、轴向拉压变形计算10kNABDC 10030kN 100 100OFN10kN20kNx+ 例例1 1图示阶梯杆,已知横截面面积AAB=ABC=500mm2,ACD=200mm2,弹性模量E=200GPa。试求杆的总伸长。 解解 1 1)作轴力图。用截面)作轴力图。用截面法求得法求得CD段和段和BC段的轴力段的轴力FNCD=FNBC=-10kN,AB段的段的轴力为轴力为FNAB=20kN,画出杆,画出杆的轴力图的轴力图 。 2)计算各段杆的变形量 ABABABABEAlFlN0.02mmmm500102001
35、00102033BCBCBBCEAlFlCNmm50010200100101033=-0.01mm 3)计算杆的总伸长l = lAB+ lBC+ lCD =(0.02-0.01-0.025) mm-0.015mm计算结果为负,说明杆的总变形为缩短。 mm025. 0mm20010200100101033NCDBCCDEAlFlCD2. 横向变形横向变形bbbaaa,bbaa泊松比泊松比(横向变(横向变形系数)形系数)PP llllabab横向线应变横向线应变则则当应力不超当应力不超过过比例极限比例极限时时1.力学性能又称机械性能,指材料在外力作用下表现出的破坏和变形等方面的特性。2.研究力学性
36、能的目的确定材料破坏和变形方面的重要性能指标,以作为强度和变形计算的依据。3.研究力学性能的方法试验。国家标准规定国家标准规定金属拉伸试验方法金属拉伸试验方法(GB2282002)L=10d L=5d对圆截面试样:对圆截面试样:对矩形截面试样:对矩形截面试样:AL3 .11AL65. 5L标距标距d标点标点标点标点FFFOlefhabcddgfl0=F/A 名义应力名义应力 ; =l / l 名义应变;名义应变;A初始横截面面积;初始横截面面积;l 原长原长 p 胡克定律 = E E弹性模量 单位:N/, GPa p etanEoabPe 特点:材料失去抵抗变形的能力屈服(流动) 特征应力:屈
37、服极限s 45oabcPes特点:材料恢复变形抗力, 特征应力:强度极限b oabcePesb 滑移线消失,试件明显变细。滑移线消失,试件明显变细。(局部变形阶段)(局部变形阶段)特征:颈缩现象断口:杯口状 oabcefPesboabcef低碳钢拉伸时明显的四个阶段低碳钢拉伸时明显的四个阶段1 1、弹性阶段、弹性阶段obobP比例极限比例极限Ee弹性极限弹性极限2 2、屈服阶段、屈服阶段bcbc(失去抵(失去抵抗变形的能力)抗变形的能力)s屈服极限屈服极限3 3、强化阶段、强化阶段cdcd(恢复抵抗(恢复抵抗变形的能力)变形的能力)强度极限强度极限b4 4、局部径缩阶段、局部径缩阶段efefP
38、esb 实验表明,如果将试实验表明,如果将试件拉伸到超过屈服点件拉伸到超过屈服点 s后的一点,如图中后的一点,如图中F点,点,然后缓慢地卸载。这是然后缓慢地卸载。这是会发现,卸载过程中试会发现,卸载过程中试件的应力应变保持直件的应力应变保持直线关系,沿着与线关系,沿着与OA近近似平行的直线似平行的直线FG回到回到G点,而不是沿原来的加点,而不是沿原来的加载曲线回到载曲线回到O点。点。FAHOG此现象称为此现象称为 冷作硬化。冷作硬化。冷作硬化就是不经过热处理,只是冷拉到强化阶段某应力值冷作硬化就是不经过热处理,只是冷拉到强化阶段某应力值后就卸载,以提高材料比例极限的方法。后就卸载,以提高材料比
39、例极限的方法。意义:工程上可用冷作硬化来提高某些构件的承意义:工程上可用冷作硬化来提高某些构件的承载能力,如预应力钢筋、钢丝绳等。载能力,如预应力钢筋、钢丝绳等。常用塑性指标:延伸率延伸率截面收缩率截面收缩率%1001LLL%1001AAAd 5% 塑性材料d 1 安全系数 许用应力塑性材料sssnorn2 . 0 脆性材料bblln 安全系数或许用应力的选定应根据有关规定或查阅国家有关规范或设计手册.通常在静荷设计中取:安全系数的选取要考虑的主要因素有:1.材料的品质:包括材质和均匀度,是塑性材料还是脆性材料。2.载荷情况:包括对荷载的估计情况,是静荷载还是动荷载等3.构件的计算简图和计算方
40、法的精确程度;4.构件在设备中的工作条件和重要性;5.对减轻设备自重和提高设备机动性的要求。ns = 1.52.5, 有时可取ns = 1.251.50nb = 23.5, 有时甚至大于3.5以上. 为了保证拉(压)杆的正常工作,必须使杆内的最大工作为了保证拉(压)杆的正常工作,必须使杆内的最大工作应力应力 maxmax不超过材料的拉伸或压缩许用应力不超过材料的拉伸或压缩许用应力 。即。即NmaxAF二、拉(压)杆的强度条件二、拉(压)杆的强度条件式中,式中,F FN N和和A A分别为危险截面上的轴力与其横截面面积。分别为危险截面上的轴力与其横截面面积。 该式称为拉该式称为拉( (压压) )
41、杆的强度条件。根据强度条件,可解决下杆的强度条件。根据强度条件,可解决下列三种强度计算问题:列三种强度计算问题: 三、三、强度条件的应用强度条件的应用:(1) (1) 强度校核强度校核 已知外力,杆件横截面的形状和尺寸,材料。已知外力,杆件横截面的形状和尺寸,材料。验算杆件是否安全。验算杆件是否安全。N maxmaxAF(2)(2) 设计横截面尺寸设计横截面尺寸(3)(3) 确定许可载荷确定许可载荷N maxFA N AFmax 已知外力,材料,杆件横截面的形状。设计杆已知外力,材料,杆件横截面的形状。设计杆件横截面的尺寸。件横截面的尺寸。 已知杆件横截面的形状和尺寸,材料。求杆件已知杆件横截
42、面的形状和尺寸,材料。求杆件所能承受的最大载荷。所能承受的最大载荷。 例例1.1. 已知一圆杆受拉力已知一圆杆受拉力F = =25kN,直径,直径d = =14mm,材料的材料的许用应力为许用应力为 = =170MPa。试校核此杆是否满足。试校核此杆是否满足强度要求。强度要求。解:解: (1)(1)求轴力求轴力FN= 25kN(2)(2)求最大的正应力求最大的正应力 AFNmax 414102523 MPa162 (3)(3)校核强度校核强度 MPa162 max故拉杆安全。故拉杆安全。 例例2. 2. 曲柄连杆机构。当连杆接近水平时,曲柄连杆机构。当连杆接近水平时,F=3780kN,=378
43、0kN,连杆横截面为矩形,连杆横截面为矩形,h/b=1.4,=1.4,材料的许用材料的许用应力为应力为 = =90MPa。试设计连杆的横截面尺寸。试设计连杆的横截面尺寸h和和b。连杆连杆FFFhbF=3780kN=3780kN,h/b=1.4, =1.4, = =90MPa。FFhb解:解: (1)(1)求轴力求轴力FN= - -3780kN(2)(2)求横截面面积求横截面面积A AFN NFA 390103780 23mm1042 (3)(3)求尺寸求尺寸h、b241 b.hbA m3 .Abmm245173411.4 .bh。,故故取取173mmmm245 bh
44、例例3 3. 两杆桁架如图所示,杆件两杆桁架如图所示,杆件AB 由两个由两个10号工号工字钢杆构成,杆字钢杆构成,杆 AC 由两个截面为由两个截面为80mm80mm 7mm 的等边角钢构成,的等边角钢构成, 所有杆件材料均为钢所有杆件材料均为钢 Q235, =170MPa。试确定结构的许可载荷试确定结构的许可载荷 F 。F1m30ACBAB杆杆10号工字钢,号工字钢, AC杆杆80mm80mm7mm等等边角钢边角钢, =170MPa。试确定结构的许可载荷试确定结构的许可载荷 F 。F1m30ACB解:解: (1)(1)求轴力求轴力30FAFN2FN103012 cosFFNN0 yF 0 xF
45、0301 FsinFNFFFFNN3221 AB杆杆10号工字钢,号工字钢, AC杆杆80mm80mm7mm等等边角钢边角钢, =170MPa。试确定结构的许可载荷试确定结构的许可载荷 F 。(2)(2)确定两杆的面积确定两杆的面积30FAFN2FN1查表得:查表得:21 cm722128610.A 22 cm682823414.A (3)(3)确定确定许可载荷许可载荷 F FFFFNN3221 由由AC杆杆确定确定: 1 11AF.F184.6kNN184620 F由由AB杆杆确定确定: 2 22AF.FkN5812N1052813.F 。
46、故故取取kN6184 .F 88 简单拉压静不定问题简单拉压静不定问题静定问题:静定问题: 未知力数未知力数 静力静力平衡方程数平衡方程数静不定问题静不定问题(超静定问题超静定问题): 未知力数未知力数 静力静力平衡方程数平衡方程数此时仅由此时仅由静力静力平衡方程不能求解全部未知量,必须建立补充方平衡方程不能求解全部未知量,必须建立补充方程,与程,与静力静力平衡方程联立求解。平衡方程联立求解。一、静定与静不定问题一、静定与静不定问题未知力数未知力数 静力静力平衡方程数平衡方程数 = 静不定问题的次数静不定问题的次数(阶数阶数)由数学知识可知:由数学知识可知:n 次静不定问题必须建立次静不定问题
47、必须建立 n 个补充方程。个补充方程。静不定问题的处理方法静不定问题的处理方法:二、简单静不定问题分析举例二、简单静不定问题分析举例除静力平衡方程外须寻求其他条件。除静力平衡方程外须寻求其他条件。 材料力学中从研究变形固体的变形出发,找出变形与约束材料力学中从研究变形固体的变形出发,找出变形与约束的关系的关系(变形协调方程变形协调方程)、变形与受力的关系、变形与受力的关系(物理方程物理方程),建立变,建立变形补充方程,与静力平衡方程联立求解。形补充方程,与静力平衡方程联立求解。静不定问题的类型:静不定问题的类型:1、外力的未知个数超过静力学平衡方程个数称为、外力的未知个数超过静力学平衡方程个数
48、称为“外力静不定问题外力静不定问题”。2、内力不能完全由静力学平衡方程确定称为、内力不能完全由静力学平衡方程确定称为“内内力静不定问题力静不定问题”。3、内力和外力都不能完全由静力学平衡方程确定、内力和外力都不能完全由静力学平衡方程确定称为称为“内力和外力静不定问题内力和外力静不定问题”。静不定问题静不定问题的解题方法:的解题方法:1. 静力平衡条件静力平衡条件静力平衡方程;静力平衡方程;2. .变形几何关系变形几何关系变形谐调条件;变形谐调条件;3. .物理关系物理关系胡克定律。胡克定律。变形补充方程变形补充方程解题步骤:解题步骤:1. 由静力平衡条件列出应有的静力平衡方程;由静力平衡条件列
49、出应有的静力平衡方程;2. .根据变形谐调条件列出变形几何方程;根据变形谐调条件列出变形几何方程;3. .根据胡克定律根据胡克定律(或其他物理关系或其他物理关系)建立物理方程;建立物理方程;4. .将物理方程代入变形几何方程得补充方程,与静力平将物理方程代入变形几何方程得补充方程,与静力平 衡方程联立求解衡方程联立求解。解题关键:又解题关键:又变形谐调条件建立变形几何方程。变形谐调条件建立变形几何方程。注意:假设的各杆轴力必须与注意:假设的各杆轴力必须与变形关系图中各杆的变形相一致。变形关系图中各杆的变形相一致。xFN1FN2yBC12GAD3 FN3GA 例例Fx=0,-FN1sin-FN2
50、sin=0Fy=0,FN3+FN1cos+FN2cos-G=0 解解 1)列平衡方程。列平衡方程。3 3l A1 12 23 3 1 1l 2)变形的几何关系)变形的几何关系设变形后各杆汇交于设变形后各杆汇交于A点,则点,则AA l3;由;由A点作点作AB的垂线的垂线AE,则有,则有EA= l1。在小变形条件下,之。在小变形条件下,之BAA ,于是变形的几何关系为,于是变形的几何关系为 l1 l2 l3cos 。l1BC12AD3 Al3E1111N1AElFl 3333N3AElFl 4 4)补充方程。将物理关系式)补充方程。将物理关系式代入几何方程,得到解该超解定代入几何方程,得到解该超解
51、定问题的补充方程,即为问题的补充方程,即为 233113N2N1NcosAEAEFFF2113322N1Ncos2cosAEAEGFF 5 5)求解各杆轴力。联立求解补充)求解各杆轴力。联立求解补充方程和两个平衡方程,可得方程和两个平衡方程,可得 2113322N1Ncos2cosAEAEGFF3)物理关系。由胡克定律,应有物理关系。由胡克定律,应有 所有构件在制造中都会有一些误差。这种误差在静定所有构件在制造中都会有一些误差。这种误差在静定结构中不会引起任何内力,而在静不定结构中则有不同的结构中不会引起任何内力,而在静不定结构中则有不同的特点。例如,图示的三杆桁架结构,若杆特点。例如,图示的
52、三杆桁架结构,若杆3 3制造时短了制造时短了d d,为了能将三根杆装配在一起,则必须将杆为了能将三根杆装配在一起,则必须将杆3 3拉长,拉长,一、装配应力 123d杆杆l、2压短。这种强行装配会在杆压短。这种强行装配会在杆3中产生拉应力,而中产生拉应力,而在杆在杆l、2中产生压应力。如误差中产生压应力。如误差d d较大,这种应力会达较大,这种应力会达到很大的数值。到很大的数值。这种由于装配而引起杆内产生的应力,这种由于装配而引起杆内产生的应力,称为装配应力。称为装配应力。 装配应力是在载荷作用前结构中已经具有的应装配应力是在载荷作用前结构中已经具有的应力,因而是一种初应力。在工程中,对于装配应
53、力力,因而是一种初应力。在工程中,对于装配应力的存在,有时是不利的,应予以避免;但有时我们的存在,有时是不利的,应予以避免;但有时我们也有意识地利用它,比如机械制造中的紧密配合和也有意识地利用它,比如机械制造中的紧密配合和土木结构中的预应力钢筋混凝土等等。土木结构中的预应力钢筋混凝土等等。 AB ABABB0 0 lAB ABAB0 0 FTlllEAlFlBFR lTltT EAlFlTRt TEAFtBR TEAFR BAB剪切变形的受力特点:剪切变形的受力特点:构件受等值、反向、作用线距离构件受等值、反向、作用线距离很近很近的二平行力的作用。的二平行力的作用。 F FF剪切面剪切面变形特
54、征:变形特征:杆件沿两力之间的截面发生错动,甚至破坏。杆件沿两力之间的截面发生错动,甚至破坏。剪切面剪切面:发生错动的面。发生错动的面。第六章第六章 剪切剪切2. 工程实例 (FFFFFF一、基本概念和实例连接连接件虽小,起着传递载荷件虽小,起着传递载荷m单剪切:有一个剪切面单剪切:有一个剪切面双剪切双剪切:有两个剪切面有两个剪切面 FFFmmFSFmmx以铆钉为例:外力以铆钉为例:外力 内力内力 应力应力强度计算强度计算剪力剪力FS: 0XFFFs剪切面上的内力。剪切面上的内力。 FFmmFmmFFSmmx剪应力剪应力:假设:假设:)( 222.AFs A A:剪切面的面积。:剪切面的面积。
55、 )( 232.AFs剪切强度条件:剪切强度条件: 剪切面上的应力。剪切面上的应力。在剪切面上均匀分布在剪切面上均匀分布, ,其方向其方向与与F Fs s 相同。相同。 故故是名义剪应力是名义剪应力 :许用剪应力;由实验得。可查有关手册。:许用剪应力;由实验得。可查有关手册。 注意:注意:1. (2.23)式除了适用于铆钉连接,也适用于其它剪切构件)式除了适用于铆钉连接,也适用于其它剪切构件;2. (2.23)式可解决三类强度问题:)式可解决三类强度问题:1)校核:)校核: 2)设计截面尺寸:)设计截面尺寸:3)确定许可载荷)确定许可载荷 : AFs sFA AFFs)( FkN15Pmm12
56、5 . 1tmm8tmm20d MPa30例例2 电瓶车挂钩由插销联接,如图。插销材料为电瓶车挂钩由插销联接,如图。插销材料为20钢,钢, ,直径,直径 。挂钩及被联接的。挂钩及被联接的板件的厚度分别为板件的厚度分别为 和和 。牵引。牵引力力 。试校核插销的剪切强度。试校核插销的剪切强度。分析插销受力分析插销受力确定剪切面确定剪切面2PFs MpaA30MPa9 .231020421015F233s计算内力计算内力4dA2二、挤压的实用计算二、挤压的实用计算挤压面:挤压面:连接件和被连接件相互压紧连接件和被连接件相互压紧的的接触面。接触面。 挤压破坏:挤压破坏:在在挤压面挤压面产生过大的塑性变
57、产生过大的塑性变形(导致连接松动)、压溃形(导致连接松动)、压溃或连接件(如铆钉)被压扁。或连接件(如铆钉)被压扁。如图为铆钉上的挤压面。如图为铆钉上的挤压面。 FFFbsFbsFFFFFF挤压力挤压力Fpc:挤压面上的压力。挤压面上的压力。 挤压应力挤压应力 c:假设:假设: c c在挤压面上均匀分布。在挤压面上均匀分布。 )24.2(cpccAF挤压面上的正应力。挤压面上的正应力。 直径直径 d bs hhdAbs 挤压强度条件:挤压强度条件:)25.2(cpccAcF=其中其中c c :许用挤压应力;:许用挤压应力;注意:注意: 1)(2.252.25)式可解决三类强度问题;)式可解决三
58、类强度问题; Ac :挤压面的:挤压面的计算面积计算面积。2)连接件与被连接件的材料不同时,应对挤压强度)连接件与被连接件的材料不同时,应对挤压强度较低的材料进行挤压计算,即选用较小的许用挤较低的材料进行挤压计算,即选用较小的许用挤压应力。压应力。剪切面与外力平行剪切面与外力平行挤压面与外力垂直挤压面与外力垂直剪切应力为剪应力剪切应力为剪应力挤压应力为正应力挤压应力为正应力剪切面计算剪切面计算铆钉与螺栓铆钉与螺栓键键241dAlbA挤压面计算挤压面计算2hlAjyhdAjy例例 一铆钉接头用四个铆钉(铆钉群)连接两块钢板。钢板与一铆钉接头用四个铆钉(铆钉群)连接两块钢板。钢板与铆钉材料相同。铆
59、钉直径铆钉材料相同。铆钉直径d=16mm,钢板的尺寸为,钢板的尺寸为b=100mm,t=10mm,P=90KN,铆钉的许用应力是,铆钉的许用应力是 =120MPa, bs=160MPa,钢板的许用拉应力钢板的许用拉应力 =160MPa。试校核铆接头试校核铆接头的强度。的强度。PPbPPtt4P4P解:解:(1) (1) 校核铆钉的剪切强度:校核铆钉的剪切强度:剪切面剪切面每个铆钉受力为每个铆钉受力为 P/4每个铆钉剪切面上的剪力为:每个铆钉剪切面上的剪力为: KNPFs5 .224904PPbPPtt4P4P(2) 校核铆钉和钢板的挤压校核铆钉和钢板的挤压强度:强度:铆钉每个挤压面上的挤压力铆钉每个挤压面上的挤压力为为:MPa141受剪面受剪面挤压面面积为挤压面面积为:tdAbs4PFbsbsbsbsAFMPabs160AFs4/2dFsMPa112MPa120铆钉满足剪切强度条件。铆钉满足剪切强度条件。铆钉和铆钉和钢板钢板都满足挤压强度条件。都满足挤压强度条件。挤压面挤压面分别为图形对 z 轴和 y 轴的静矩。说明:说明:1、静矩不仅与平面图形的形状尺寸、静矩不仅与平面图形的形状尺寸有关,还与所选坐标轴的位置有关。有关,还与所选坐标轴的位置有关。2、静矩的数值可正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成语英文翻译
- 政府公开招标合同实例
- 安全活动协议范本
- 服装设计版权共享协议
- 建筑用工协议
- 2024年农场种植土地租赁合同
- 人才招聘委托协议
- 住房抵押担保借款合同的样本版
- 【初中地理】《影响气候的主要因素和气候的影响》教学课件-2024-2025学年人教版地理七年级上册
- 共同购房合作协议书范本
- 银行转账截图生成器制作你想要的转账截图
- 2022年版 义务教育《数学》课程标准
- 家长会课件:小学一年级家长会语文老师课件
- 成人住院患者静脉血栓栓塞症Caprini、Padua风险评估量表
- 小学团委支部工作计划
- 小班安全我要跟着老师走
- 外事实务智慧树知到期末考试答案2024年
- 中考道德与法治复习策略指导
- 人工智能儿童科普
- 产品经济性设计与分析报告
- 基于核心素养初中数学跨学科教学融合策略
评论
0/150
提交评论