晶体薄膜衍衬成像分析_第1页
晶体薄膜衍衬成像分析_第2页
晶体薄膜衍衬成像分析_第3页
晶体薄膜衍衬成像分析_第4页
晶体薄膜衍衬成像分析_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1第十一章第十一章 晶体薄膜衍衬成像分析晶体薄膜衍衬成像分析2 引言引言 超显微颗粒试样超显微颗粒试样形态观察形态观察, ,颗粒度测定颗粒度测定, ,结构分析等结构分析等 试样的表面复型试样的表面复型金相组织金相组织, ,断口形貌断口形貌, ,磨损表面等磨损表面等 金属或陶瓷薄膜金属或陶瓷薄膜金相组织与结构金相组织与结构, , 析出相形态析出相形态, ,分布与结构分布与结构, , 位错类型等位错类型等3复型技术的缺陷:复型技术的缺陷:复型技术完全依赖于侵蚀浮雕的复制,与金相显微镜无本质复型技术完全依赖于侵蚀浮雕的复制,与金相显微镜无本质区别。只能对观察物质表面的微观形貌,它无法获得物质内区别。

2、只能对观察物质表面的微观形貌,它无法获得物质内部的信息。部的信息。晶体薄膜样品的优势:晶体薄膜样品的优势:不仅能清晰地显示样品内部的精细结构,而且还能使电镜的不仅能清晰地显示样品内部的精细结构,而且还能使电镜的分辨率大大提高。此外,结合薄膜样品的电子衍射分析,还分辨率大大提高。此外,结合薄膜样品的电子衍射分析,还可以得到许多和晶体学方面的有关信息。可以得到许多和晶体学方面的有关信息。只有利用薄膜透射技术,方能在同一台仪器上同时只有利用薄膜透射技术,方能在同一台仪器上同时对材料的微观组织和晶体结构进行原位对照分析。对材料的微观组织和晶体结构进行原位对照分析。 引言引言4透射电镜由于入射电子透射试

3、样后,将与试样内透射电镜由于入射电子透射试样后,将与试样内部原子发生相互作用,从而改变其能量及运动方部原子发生相互作用,从而改变其能量及运动方向。显然,不同结构有不同的相互作用。这样,向。显然,不同结构有不同的相互作用。这样,就可以根据透射电子图象所获得的信息来了解试就可以根据透射电子图象所获得的信息来了解试样内部的结构。由于试样结构和相互作用的复杂样内部的结构。由于试样结构和相互作用的复杂性,因此所获得的图象也很复杂。它不象表面形性,因此所获得的图象也很复杂。它不象表面形貌那样直观、易懂。貌那样直观、易懂。透射电镜图象透射电镜图象5 因此,如何对一张电子图象获得的信息作出因此,如何对一张电子

4、图象获得的信息作出正确的解释和判断,不但很重要,也很困难。必正确的解释和判断,不但很重要,也很困难。必须建立一套相应的理论才能对透射电子象作出正须建立一套相应的理论才能对透射电子象作出正确的解释。确的解释。 如前所述电子束透过试样所得到的透射电子如前所述电子束透过试样所得到的透射电子束的强度及方向均发生了变化,由于试样各部位束的强度及方向均发生了变化,由于试样各部位的组织结构不同,因而透射到荧光屏上的各点强的组织结构不同,因而透射到荧光屏上的各点强度是不均匀的,这种强度的不均匀分布现象就称度是不均匀的,这种强度的不均匀分布现象就称为为衬度衬度,所获得的电子象称为,所获得的电子象称为透射电子衬度

5、象透射电子衬度象。透射电镜图象透射电镜图象6 质厚衬度的局限性质厚衬度的局限性: 由于晶体薄膜样品的厚度大致均匀,平均原子由于晶体薄膜样品的厚度大致均匀,平均原子序数也没有差别,因此薄膜不同部位对电子的散射序数也没有差别,因此薄膜不同部位对电子的散射或吸收作用大致相同,所以不可能利用质厚衬度来或吸收作用大致相同,所以不可能利用质厚衬度来获得满意的图象反差。获得满意的图象反差。 如果让散射电子与透射电子在像平面上复合而如果让散射电子与透射电子在像平面上复合而构成像点的亮度,则图像除了能够显示样品的形貌构成像点的亮度,则图像除了能够显示样品的形貌特征之外,所有其它的信息特征之外,所有其它的信息(

6、(特别是与晶体学有关的特别是与晶体学有关的信息信息) )将全部损失。将全部损失。电子衬度象电子衬度象7 衍射衬度形成机理衍射衬度形成机理 设想薄膜内有两个晶体学位向设想薄膜内有两个晶体学位向不同的晶粒不同的晶粒A A和和B B。在入射电子的照。在入射电子的照射下,入射电子束恰好与射下,入射电子束恰好与B B晶粒中晶粒中的的(h(h1 1k k1 1l l1 1) )晶面组交成精确的布拉晶面组交成精确的布拉格角格角,形成强烈衍射,结果在物,形成强烈衍射,结果在物镜的背焦面上出现强的衍射斑镜的背焦面上出现强的衍射斑h h1 1k k1 1l l1 1。而其它的晶面则偏离。而其它的晶面则偏离Brag

7、gBragg衍射条件,形成透射束。衍射条件,形成透射束。B B晶粒的位向满足晶粒的位向满足“双光束条件双光束条件”。 衍射衬度是来源于晶体试样各部分满足布拉格反射条件不衍射衬度是来源于晶体试样各部分满足布拉格反射条件不同和结构振幅的差异。同和结构振幅的差异。 以单相的多晶体薄膜样品为例说明:以单相的多晶体薄膜样品为例说明:8 所以强度为所以强度为I I0 0的入射电子束在的入射电子束在B B晶粒区域内经过散射之晶粒区域内经过散射之后,将形成强度为后,将形成强度为I Ihklhkl的衍射束和强度为的衍射束和强度为(I(I0 0-I-Ihklhkl) )的透射束的透射束两部分。两部分。 设想设想A

8、 A晶粒内所有晶面组与晶粒内所有晶面组与B B晶粒位向不同,均与晶粒位向不同,均与BraggBragg条件存在较大偏差,条件存在较大偏差,A A晶粒的选区衍射花样中将不出现任何晶粒的选区衍射花样中将不出现任何强衍射斑点而只有中心透射斑点。此时可以认为所有衍射束强衍射斑点而只有中心透射斑点。此时可以认为所有衍射束的强度均可视为零。的强度均可视为零。 A A晶粒区域的透射束强度近似等于入射束强度晶粒区域的透射束强度近似等于入射束强度I I0 0。 衍射衬度形成机理衍射衬度形成机理9 由于电镜中样品的第由于电镜中样品的第一幅衍射花样出现在物一幅衍射花样出现在物镜的后焦面上,所以可镜的后焦面上,所以可

9、以在后焦面上加一个尺以在后焦面上加一个尺寸足够小的物镜光阑,寸足够小的物镜光阑,把把B B晶粒的晶粒的hklhkl衍射束挡衍射束挡住,而只让透射束通过住,而只让透射束通过光阑孔到达像平面,形光阑孔到达像平面,形成样品的放大像。成样品的放大像。衍射成像原理衍射成像原理( (明场像明场像) ) 衍射衬度形成机理衍射衬度形成机理10此时:两个晶粒的像亮度将有不同:此时:两个晶粒的像亮度将有不同: I IA A I I0 0 I IB B I I0 0I Ihklhkl00若以若以A A晶粒亮度晶粒亮度I I0 0为背景强度,则为背景强度,则B B晶粒的像衬度为:晶粒的像衬度为:0()hklABBAI

10、IIIIII衍射衬度衍射衬度由于样品中不同位向的晶体衍射条件由于样品中不同位向的晶体衍射条件( (位向位向) )不同而造成的不同而造成的衬度。衬度。明场像明场像(BF)(BF)采用物镜光栏将衍射束挡掉,只让透射束通过而得到图采用物镜光栏将衍射束挡掉,只让透射束通过而得到图象衬度的方法称为明场成像,所得的图象称为明场像。象衬度的方法称为明场成像,所得的图象称为明场像。 衍射衬度形成机理衍射衬度形成机理11正方正方ZrOZrO2 2多晶的明场像多晶的明场像12如果我们将光阑孔左移,使如果我们将光阑孔左移,使它的位置和衍射斑它的位置和衍射斑hklhkl重合,重合,那么,由于透射束完全被光那么,由于透

11、射束完全被光阑挡掉。阑挡掉。A A晶粒显示不出亮晶粒显示不出亮度,而度,而B B晶粒将由衍射束提晶粒将由衍射束提供的强度供的强度(I(IB B=I=Ihklhkl) )在像平面在像平面上成像,这种用衍射束形成上成像,这种用衍射束形成的电子显微图象叫暗场像的电子显微图象叫暗场像(DF)(DF)。衍射衬度成像原理衍射衬度成像原理暗场像暗场像 衍射衬度形成机理衍射衬度形成机理13偏心暗场像是用离轴光线成像,由偏心暗场像是用离轴光线成像,由于衍射束远离透镜的主轴球差就会于衍射束远离透镜的主轴球差就会很大,所以得到的图像质量不高,很大,所以得到的图像质量不高,有严重的像差。有严重的像差。通常可以通过将入

12、射电子束方向倾通常可以通过将入射电子束方向倾斜斜22角度角度( (借助显微镜的内上下偏借助显微镜的内上下偏转线圈来完成转线圈来完成) )。此时衍射斑。此时衍射斑( (副焦副焦点点) )将移到透镜的中心位置。由于衍将移到透镜的中心位置。由于衍射束和透镜的主轴重合,球差大大射束和透镜的主轴重合,球差大大减小,因此中心暗场(减小,因此中心暗场(CDFCDF)的图像)的图像比普通的暗场像清晰。比普通的暗场像清晰。 中心暗场衍射成像中心暗场衍射成像 衍射衬度形成机理衍射衬度形成机理14明场相明场相暗场相暗场相不锈钢中的位错线像不锈钢中的位错线像 衍射衬度形成机理衍射衬度形成机理15暗场成像有两种方法:偏

13、心暗场像与中心暗场像。暗场成像有两种方法:偏心暗场像与中心暗场像。暗场成像技术要点:暗场成像技术要点: (1) (1) 只有晶体试样形成的衍衬像才存明场像与暗场像之只有晶体试样形成的衍衬像才存明场像与暗场像之分,其亮度是明暗反转的,即在明场下是亮线,在暗场分,其亮度是明暗反转的,即在明场下是亮线,在暗场下则为暗线,其条件是,此暗线确实是所用的操作反射下则为暗线,其条件是,此暗线确实是所用的操作反射斑引起的。通常,暗场像的衬度将明显地高于明场像。斑引起的。通常,暗场像的衬度将明显地高于明场像。(2)(2) 物镜光阑地直径愈小,被挡住地衍射束愈多,图像物镜光阑地直径愈小,被挡住地衍射束愈多,图像的

14、衬度愈高,所以在拍摄显微组织照片时,要使用小孔的衬度愈高,所以在拍摄显微组织照片时,要使用小孔径的物镜光阑。径的物镜光阑。 衍射衬度形成机理衍射衬度形成机理16(3) (3) 衍射成像方法中,某一最符合衍射成像方法中,某一最符合BraggBragg条件的条件的(hkl)(hkl)晶面组晶面组 强衍射束起着十分关键的作用,因为它直接决定了图像的衬度。强衍射束起着十分关键的作用,因为它直接决定了图像的衬度。(4) (4) 它不是表面形貌的直观反映,是入射电子束与晶体试样它不是表面形貌的直观反映,是入射电子束与晶体试样之间相互作用后的反映。正是因为衍射图像完全是由衍射强度之间相互作用后的反映。正是因

15、为衍射图像完全是由衍射强度的差别所产生的,所以这种图像必将是样品内不同部位晶体学的差别所产生的,所以这种图像必将是样品内不同部位晶体学特征的直接的反映。特征的直接的反映。 为了使衍衬像与晶体内部结构关系有机的联系起来,从而为了使衍衬像与晶体内部结构关系有机的联系起来,从而能够根据衍衬像来分析晶体内部的结构,探测晶体内部的缺陷,能够根据衍衬像来分析晶体内部的结构,探测晶体内部的缺陷,必须建立一套理论,这就是衍衬运动学理论和动力学理论(超必须建立一套理论,这就是衍衬运动学理论和动力学理论(超出范围不讲)。出范围不讲)。 衍射衬度形成机理衍射衬度形成机理17衍衬象理论的预备知识衍衬象理论的预备知识消

16、光距离的概念消光距离的概念 入射电子受原子强烈的散射作用,因而在晶体内透射波入射电子受原子强烈的散射作用,因而在晶体内透射波和衍射波之间存在相互作用。和衍射波之间存在相互作用。 我们将在简单的双光束条件下,也即当晶体的我们将在简单的双光束条件下,也即当晶体的(hkl)(hkl)晶面晶面处于精确的处于精确的 BraggBragg位向时,入射波被激发成为透射波和位向时,入射波被激发成为透射波和(hkl)(hkl)晶面的衍射波,考虑这两个波之间的相互作用。晶面的衍射波,考虑这两个波之间的相互作用。 当波矢量为当波矢量为k k的入射波到达样品上表面时,受到晶体内原的入射波到达样品上表面时,受到晶体内原

17、子的相干散射,产生波矢量为子的相干散射,产生波矢量为k k的衍射波。随着电子波在晶的衍射波。随着电子波在晶体内深度方向上的传播,透射波体内深度方向上的传播,透射波( )( )和衍射波和衍射波( ) ( ) 的强度也相应发生变化。的强度也相应发生变化。2ggI200I18Bragg向下的衍射振幅变化强度变化在在(hkl)(hkl)晶面为精确的晶面为精确的BraggBragg位向时电子波在晶体内深度位向时电子波在晶体内深度方向上的传播方向上的传播消光距离消光距离19由于入射波与由于入射波与(hkl)(hkl)晶面交成精确的晶面交成精确的BraggBragg角角,那么由入射,那么由入射波激发产生的衍

18、射波也与该晶面交成同样的角度,于是在晶波激发产生的衍射波也与该晶面交成同样的角度,于是在晶体内逐步增强的衍射波也将作为新的入射波激发同一晶面的体内逐步增强的衍射波也将作为新的入射波激发同一晶面的二次衍射,其方向恰与透射波的传播方向相同。此时,衍射二次衍射,其方向恰与透射波的传播方向相同。此时,衍射波的强度逐渐下降而透射波的强度相应增大。波的强度逐渐下降而透射波的强度相应增大。消光的物理含义:消光的物理含义:电子波尽管满足衍射条件,但由于动力学相互作用而在晶体电子波尽管满足衍射条件,但由于动力学相互作用而在晶体内一定深度处衍射波内一定深度处衍射波( (或透射波或透射波) )的强度实际上为零。的强

19、度实际上为零。消光距离消光距离20这种强烈的动力学相互作用,使这种强烈的动力学相互作用,使I I0 0和和I Ig g在晶体的深度方向上在晶体的深度方向上发生周期性的振荡。振荡的深度周期叫做消光距离,记做发生周期性的振荡。振荡的深度周期叫做消光距离,记做g g。理论推导结果表明:理论推导结果表明:式中:式中:d d 晶面间距晶面间距 V Vc c晶胞体积晶胞体积 入射电子波长入射电子波长 BraggBragg衍射角度衍射角度 F Fg g 结构因子结构因子 coscggVF消光距离消光距离21由上式可知:对于确定的入射电子波长,消光距离是样品晶由上式可知:对于确定的入射电子波长,消光距离是样品

20、晶体的一种物理属性,对同一晶体,当不同晶面的衍射波被激体的一种物理属性,对同一晶体,当不同晶面的衍射波被激发时,也有不同的发时,也有不同的g g值。值。加速电压为加速电压为100KV100KV时的消光距离时的消光距离(nm)(nm)晶体晶体Z点阵点阵 110111200211AlAgAuFeSi1347792614fccfccfccbccdc28562418606827204050消光距离消光距离22晶体Z点阵10-1011-2020-20MgZr1210hcphcp1506014050335115消光距离随加速电压的变化晶体Hkl50kV100kV200kV1000kVAlFeZr11111

21、010-104120455628607041909546102消光距离消光距离23衍衬象运动理论的基本假设衍衬象运动理论的基本假设衍射衬度与布拉格衍射有关,衍射衬度的反差,衍射衬度与布拉格衍射有关,衍射衬度的反差,实际上就是衍射强度的反映。因此,计算衬度实实际上就是衍射强度的反映。因此,计算衬度实质就是计算衍射强度。它是非常复杂的。为了简质就是计算衍射强度。它是非常复杂的。为了简化,需做必要的假定。由于这些假设,运动学所化,需做必要的假定。由于这些假设,运动学所得的结果在应用上受到一定的限制。但由于假设得的结果在应用上受到一定的限制。但由于假设比较接近于实际,所建立的运动学理论基本上能比较接近

22、于实际,所建立的运动学理论基本上能够说明衍衬像所反映的晶体内部结构实质,有很够说明衍衬像所反映的晶体内部结构实质,有很大的实用价值。大的实用价值。24基本假设包括下列四点:基本假设包括下列四点:1)1)采用双束近似处理方法,即所谓的采用双束近似处理方法,即所谓的“双光束条件双光束条件”除透射除透射束外,只有一束较强的衍射束参与成象,忽略其它衍射束,束外,只有一束较强的衍射束参与成象,忽略其它衍射束,这束较强的衍射束的反射晶面接近这束较强的衍射束的反射晶面接近BraggBragg条件,但不精确符合条件,但不精确符合BraggBragg条件。条件。这个假设有两个目的:这个假设有两个目的:a)a)存

23、在一个偏离矢量存在一个偏离矢量s s,使衍射束的强度远比透射束弱,这可,使衍射束的强度远比透射束弱,这可以保证衍射束和透射束之间没有能量交换。以保证衍射束和透射束之间没有能量交换。b) b) 若只有一束衍射束,则可以认为衍射束的强度和透射束的若只有一束衍射束,则可以认为衍射束的强度和透射束的强度之间有互补关系,因此,我们只要计算出衍射束强度,强度之间有互补关系,因此,我们只要计算出衍射束强度,便可以知道透射束的强度。便可以知道透射束的强度。衍衬象运动理论的基本假设衍衬象运动理论的基本假设252 2)入射束与衍射束不存在相互作用,二者之间无能量交换。)入射束与衍射束不存在相互作用,二者之间无能量

24、交换。当衍射束的强度比入射束小的多时,这个条件可以满足,当衍射束的强度比入射束小的多时,这个条件可以满足,特别是在很薄和偏离矢量较大的情况下。特别是在很薄和偏离矢量较大的情况下。衍射运动学衍射动力学相干散射电子波在晶体内强度随深度变化的示意图相干散射电子波在晶体内强度随深度变化的示意图衍衬象运动理论的基本假设衍衬象运动理论的基本假设263 3) 假设电子束在晶体试样内多次反射与吸收可以忽略不计。假设电子束在晶体试样内多次反射与吸收可以忽略不计。如果样品非常薄,反射和吸收可以忽略。如果样品非常薄,反射和吸收可以忽略。4 4)柱体近似)柱体近似 假设相邻两入射束之间没有相互作用,每一入射束范围假设

25、相邻两入射束之间没有相互作用,每一入射束范围可以看作在一个圆柱体内,只考虑沿柱体轴向上的衍射强度可以看作在一个圆柱体内,只考虑沿柱体轴向上的衍射强度的变化,认为的变化,认为dxdx、dydy方向的位移对布拉格反射不起作用,即方向的位移对布拉格反射不起作用,即对衍射无贡献。这样变三维情况为一维情况,这在晶体很薄,对衍射无贡献。这样变三维情况为一维情况,这在晶体很薄,且布拉格反射角且布拉格反射角22很小的情况下也是符合实际的。很小的情况下也是符合实际的。衍衬象运动理论的基本假设衍衬象运动理论的基本假设27 柱体假设的示意图柱体假设的示意图28 此晶柱的截面积等于或略大于一个晶胞的底面积,晶此晶柱的

26、截面积等于或略大于一个晶胞的底面积,晶柱柱底面上的衍射强度只代表一个晶底面上的衍射强度只代表一个晶柱柱内晶体结构的情况。内晶体结构的情况。若把整个晶体表面分成很多柱体。计算每个柱体下表面的若把整个晶体表面分成很多柱体。计算每个柱体下表面的衍射强度,汇合一起就组成一幅由各柱体衍射强度组成的衍射强度,汇合一起就组成一幅由各柱体衍射强度组成的衍衬象。衍衬象。 由于晶柱底部的截面积很小,它比所能观察到的最小由于晶柱底部的截面积很小,它比所能观察到的最小晶体缺陷的尺度还要小一些,事实上每个晶晶体缺陷的尺度还要小一些,事实上每个晶柱柱底部的衍射底部的衍射强度都可以看成一个像点,把这些像点连接成的图像,就强

27、度都可以看成一个像点,把这些像点连接成的图像,就能反映出晶体试样内各种缺陷的结构特点。能反映出晶体试样内各种缺陷的结构特点。 柱体假设柱体假设29 理想完整晶体衍射强度理想完整晶体衍射强度如果要计算柱体下表面处的衍射强度如果要计算柱体下表面处的衍射强度I Ig g,需先计算衍射,需先计算衍射波振幅波振幅g g,两者的关系为:,两者的关系为:2ggI当一个晶胞在电子束的作用下产生散射时,散射波的振当一个晶胞在电子束的作用下产生散射时,散射波的振幅可以表示为:幅可以表示为:igFeF:F:晶胞的散射波振幅晶胞的散射波振幅 2K2K.r.r,是,是r r处原子面散射波相对于晶体上表面位置处原子面散射

28、波相对于晶体上表面位置散射波的相位角差。散射波的相位角差。 K K:衍射矢量。:衍射矢量。30晶体柱晶体柱OAOA的衍射强度的衍射强度31晶体下表面的衍射振幅等于所有晶胞产生的散射波在衍射晶体下表面的衍射振幅等于所有晶胞产生的散射波在衍射方向方向K K上的总和。它可以表示为:上的总和。它可以表示为:,1Mig TFe是指两个晶胞散射波之间的位相差角。是指两个晶胞散射波之间的位相差角。考虑到在偏离考虑到在偏离BraggBragg条件时,衍射矢量条件时,衍射矢量K K偏离基矢量为偏离基矢量为s s:Kkkgs如果相邻两个单胞的散射波偏离如果相邻两个单胞的散射波偏离BraggBragg条件,相位角条

29、件,相位角的表达式为:的表达式为:2. 2(). i K ri gs r 理想完整晶体衍射强度理想完整晶体衍射强度32假定单胞的散射波振幅是一个单位,所以当单胞的散射波假定单胞的散射波振幅是一个单位,所以当单胞的散射波振幅为某一确定数值振幅为某一确定数值F F时,晶柱合成衍射波的振幅大小为时,晶柱合成衍射波的振幅大小为( (推导从略推导从略) ):相应晶柱的衍射束强度:相应晶柱的衍射束强度:上述两式就是理想晶体衍射运动学的基本方程上述两式就是理想晶体衍射运动学的基本方程 理想完整晶体衍射强度理想完整晶体衍射强度33 从上式看出,理想晶体的衍射强度从上式看出,理想晶体的衍射强度I Ig g随样品

30、的厚度随样品的厚度t t和衍和衍射晶面与精确的射晶面与精确的BraggBragg位向之间的偏离参量位向之间的偏离参量s s而变化。而变化。 由于运动学理论认为明暗场的衬度是互补的,于是有:由于运动学理论认为明暗场的衬度是互补的,于是有:2221sin ()1 ()()TgTgIItsIs sinsin2 2(st)/(s)(st)/(s)2 2 称为干涉函数称为干涉函数. .I Ig g是厚度是厚度 t t 与偏离矢量与偏离矢量s s的周期性函数的周期性函数 理想完整晶体衍射强度理想完整晶体衍射强度34 理想晶体衍衬运动学基本方程的应用理想晶体衍衬运动学基本方程的应用1) 1) 等厚消光条纹等

31、厚消光条纹( (衍射强度随样品厚度的变化衍射强度随样品厚度的变化) ) 如果晶体保持确定的位向如果晶体保持确定的位向, ,则衍射晶面的偏离则衍射晶面的偏离矢量矢量s s保持恒定保持恒定, ,此时上式变为此时上式变为: :221sin ()()ggItss将将I Ig g 随晶体厚度随晶体厚度t t的变化画成曲线,得:的变化画成曲线,得:35 衍射强度衍射强度I Ig g随晶体厚度随晶体厚度t t的变化的变化显然,当显然,当s = s = 常数时,随着样品厚度常数时,随着样品厚度t t的变化衍射强度将的变化衍射强度将发生周期性的振荡。发生周期性的振荡。 振荡周期:振荡周期:t tg g = 1/

32、s= 1/s等厚消光条纹等厚消光条纹36当当t=n/s (nt=n/s (n为整数)时,为整数)时, I I g g =0=0。当当t=(n+1/2)/st=(n+1/2)/s时,时, I I g g = I= I g max g max=1/(s=1/(s g )g )2 2 I I g g 随随t t的周期性振荡这一运动学结果,定性地解释了晶体样品的周期性振荡这一运动学结果,定性地解释了晶体样品的锲形边缘处出现的厚度消光条纹。在锲形边缘将得到几列亮暗相的锲形边缘处出现的厚度消光条纹。在锲形边缘将得到几列亮暗相间的条纹,每一亮暗周期代表一个消光距离的大小。间的条纹,每一亮暗周期代表一个消光距

33、离的大小。1ggIs 因为同一条纹上晶体的厚度是相同的,所以这种条纹叫等厚条纹。因为同一条纹上晶体的厚度是相同的,所以这种条纹叫等厚条纹。消光条纹的数目实际上反映了薄晶体的厚度。可以通过计算消光条纹消光条纹的数目实际上反映了薄晶体的厚度。可以通过计算消光条纹的数目来估算薄晶体的厚度。的数目来估算薄晶体的厚度。等厚消光条纹等厚消光条纹37s不变,不变,t变:变:222sin ()()()s tIsggggIg1/sg等厚消光条纹等厚消光条纹38晶体内部的晶界、亚晶界、挛晶界层错都属于倾斜界面。晶体内部的晶界、亚晶界、挛晶界层错都属于倾斜界面。电子束电子束倾斜界面示意图倾斜界面示意图若图中下方晶体

34、偏离若图中下方晶体偏离BraggBragg条件甚远,则可以认为电子束穿过这个晶体条件甚远,则可以认为电子束穿过这个晶体时无衍射产生,而上方晶体在一定的偏离条件时无衍射产生,而上方晶体在一定的偏离条件(s=(s=常数常数) )下可产生等厚下可产生等厚条纹,这就是实际晶体中倾斜界面的衍衬图像。条纹,这就是实际晶体中倾斜界面的衍衬图像。等厚消光条纹等厚消光条纹39立方立方ZrOZrO2 2倾斜晶界条纹倾斜晶界条纹不锈钢样品的圆孔楔形不锈钢样品的圆孔楔形边缘等厚条纹边缘等厚条纹等厚消光条纹等厚消光条纹40如果把没有缺陷的薄晶体稍加弯曲,则在衍射图象上可以出现等倾条如果把没有缺陷的薄晶体稍加弯曲,则在衍

35、射图象上可以出现等倾条纹,此时薄晶体的厚度可以视为常数,而晶体内处在不同部位的衍射纹,此时薄晶体的厚度可以视为常数,而晶体内处在不同部位的衍射晶面因弯曲而使它们和入射束之间存在不同程度的偏移,即薄晶体上晶面因弯曲而使它们和入射束之间存在不同程度的偏移,即薄晶体上各点具有不同的偏移矢量各点具有不同的偏移矢量s s。未经弯曲的晶体未经弯曲的晶体晶体弯曲后衍射条件的变化晶体弯曲后衍射条件的变化等倾条纹形成原理示意图等倾条纹形成原理示意图等倾条纹等倾条纹41当当t不变,不变,s改变:改变:BB B BS0S0S0等倾条纹等倾条纹42从图中可以看出,因为从图中可以看出,因为A A、B B位置的晶面和入射

36、束之位置的晶面和入射束之间正好精确符合间正好精确符合BraggBragg条件,因此在这两个位置将条件,因此在这两个位置将产生较强的衍射束,其结果将使荧光屏上相当于产生较强的衍射束,其结果将使荧光屏上相当于A A、B B位置的晶面处的透射束的强度大为下降,而形成位置的晶面处的透射束的强度大为下降,而形成黑色条纹,这就是由于弯曲引起的消光条纹。黑色条纹,这就是由于弯曲引起的消光条纹。因为同一条纹上晶体偏离矢量的数值是相等的,所因为同一条纹上晶体偏离矢量的数值是相等的,所以这种条纹被称为等倾条纹。以这种条纹被称为等倾条纹。等倾条纹等倾条纹43 现在我们讨论衍射强度现在我们讨论衍射强度I I g g

37、随晶体位向的变化,公式可随晶体位向的变化,公式可改写成为:改写成为: I Ig g =2 2 t t2 2sinsin2 2(ts)/(ts)/g g2 2(ts)(ts)2 2 当当t=t=常数时,衍射强度常数时,衍射强度I Ig g 随衍射晶面的偏离参量随衍射晶面的偏离参量s s的变的变化如下图所示。化如下图所示。 由此可见,随着由此可见,随着s s绝对值的增大,绝对值的增大,I Ig g也发生周期性的强也发生周期性的强度振荡,振荡周期为:度振荡,振荡周期为: s sg g =1/t, =1/t, 如果如果s=s=1/t1/t、2/t2/t ,I ,Ig g=0,=0,发生消光发生消光.

38、.而而s=0s=0、3/2t3/2t、5/2t, I5/2t, Ig g有极大值有极大值, ,但随着但随着s s的绝对值的增的绝对值的增大大, ,极大值峰值强度迅速减小。极大值峰值强度迅速减小。 s=0, Is=0, Ig maxg max=2 2t t2 2/g g 等倾条纹等倾条纹44倒易空间内衍射强度倒易空间内衍射强度I Ig g随偏移矢量随偏移矢量s s的变化的变化等倾条纹等倾条纹45 根据倒易空间中衍射强度的变化规律,可以将根据倒易空间中衍射强度的变化规律,可以将1/t1/t的的范围看作是偏离范围看作是偏离BraggBragg条件后能产生衍射强度的界线。一般条件后能产生衍射强度的界线

39、。一般情况下,我们只能看到情况下,我们只能看到s=0s=0时的等倾条纹。时的等倾条纹。 通过以上分析,可以定性的解释倒易阵点在晶体尺寸最通过以上分析,可以定性的解释倒易阵点在晶体尺寸最小小方向上的扩展。当只考虑到衍射强度主极大值的衰减周期方向上的扩展。当只考虑到衍射强度主极大值的衰减周期(-1/t1/t)时,因为时,因为s=1/t,据此可以得出,晶体厚度愈薄,倒,据此可以得出,晶体厚度愈薄,倒易杆长度愈长的结论。易杆长度愈长的结论。 运动学理论关于衍射强度随晶体位向变化的结果运动学理论关于衍射强度随晶体位向变化的结果, ,在实在实验上也得到证明验上也得到证明, ,那就是弹性形变的薄膜晶体所产生

40、的弯曲那就是弹性形变的薄膜晶体所产生的弯曲消光条纹消光条纹等倾条纹等倾条纹46区分等厚和等倾条纹的简单方法区分等厚和等倾条纹的简单方法 如果倾动样品面如果倾动样品面, ,样品上相应于样品上相应于s=0s=0的位置将发的位置将发生变化生变化, ,消光条纹的位置将跟着改变,在荧光屏上大消光条纹的位置将跟着改变,在荧光屏上大幅度扫动。等厚消光条纹则不随晶体样品倾转面扫幅度扫动。等厚消光条纹则不随晶体样品倾转面扫动,这是区分等厚条纹与等倾条纹的简单方法。动,这是区分等厚条纹与等倾条纹的简单方法。 如果样品的变形比较复杂,那么等倾条纹大多如果样品的变形比较复杂,那么等倾条纹大多不具备对称的特征。有时样品

41、受电子束照射后,由不具备对称的特征。有时样品受电子束照射后,由于温度升高而变形,在视域中就可看见弯曲消光条于温度升高而变形,在视域中就可看见弯曲消光条纹的运动。纹的运动。47非理想晶体的衍射衬度非理想晶体的衍射衬度 一一. .不完整晶体及其对衍射强度的影响不完整晶体及其对衍射强度的影响 上面讨论了完整晶体的衍衬象,认为晶体是理想的,上面讨论了完整晶体的衍衬象,认为晶体是理想的,无缺陷的。但在实际中,由于熔炼,加工和热处理等原因,无缺陷的。但在实际中,由于熔炼,加工和热处理等原因,晶体或多或少存在着不完整性,并且较复杂,这种不完整晶体或多或少存在着不完整性,并且较复杂,这种不完整性包括三个方向:

42、性包括三个方向: 1.1.由于晶体取向关系的改变而引起的不完整性,例如由于晶体取向关系的改变而引起的不完整性,例如晶界、孪晶界、沉淀物与基体界向等等。晶界、孪晶界、沉淀物与基体界向等等。 2.2.晶体缺陷引起,主要有关缺陷(空穴与间隙原子),晶体缺陷引起,主要有关缺陷(空穴与间隙原子),线缺陷(位错)、面缺陷(层错)及体缺陷(偏析,二相线缺陷(位错)、面缺陷(层错)及体缺陷(偏析,二相粒子,空洞等)。粒子,空洞等)。483. 3. 相转变引起的晶体不完整性:成分不变组织不变相转变引起的晶体不完整性:成分不变组织不变(spinodalsspinodals);组织改变成分不变(马氏体相变);相);

43、组织改变成分不变(马氏体相变);相界面(共格、半共格、非共格),具有以上不完整性的晶体,界面(共格、半共格、非共格),具有以上不完整性的晶体,称为不完整晶体。称为不完整晶体。 由于各种缺陷的存在,改变了完整晶体中原子的正常排由于各种缺陷的存在,改变了完整晶体中原子的正常排列情况,使得晶体中某一区域的原子偏离了原来正常位置而列情况,使得晶体中某一区域的原子偏离了原来正常位置而产生了畸变,这种畸变使缺陷处晶面与电子束的相对位相发产生了畸变,这种畸变使缺陷处晶面与电子束的相对位相发生了改变,它与完整晶体比较,其满足布拉格条件就不一样,生了改变,它与完整晶体比较,其满足布拉格条件就不一样,因而造成了有

44、缺陷区域与无缺陷的完整区域的衍射强度的差因而造成了有缺陷区域与无缺陷的完整区域的衍射强度的差异,从而产生了衬度。异,从而产生了衬度。根据这种衬度效应。人们可以判断晶根据这种衬度效应。人们可以判断晶体内存在什么缺陷和相变。体内存在什么缺陷和相变。非理想晶体的衍射衬度非理想晶体的衍射衬度49首先一般性的讨论当晶体存首先一般性的讨论当晶体存在缺陷时衍射强度的影响,在缺陷时衍射强度的影响,然后再对不同缺陷的具体影然后再对不同缺陷的具体影响进行分析。响进行分析。与理想晶体比较,不论是何与理想晶体比较,不论是何种晶体缺陷的存在,都会引种晶体缺陷的存在,都会引起缺陷附近某个区域内点阵起缺陷附近某个区域内点阵

45、发生畸变。发生畸变。缺陷矢量R非理想晶体的衍射衬度非理想晶体的衍射衬度50 我们仍然采用柱体近似的方法,则相应的晶体柱也将我们仍然采用柱体近似的方法,则相应的晶体柱也将发生某种畸变,如图所示。发生某种畸变,如图所示。 此时,柱体内深度此时,柱体内深度Z Z处的厚度元处的厚度元dz dz 因受缺陷因受缺陷R R的影响发的影响发生位移生位移r r, ,其坐标矢量由理想位置的其坐标矢量由理想位置的r r变为:变为: 所以,非完整晶体的衍射波合波的振幅为:所以,非完整晶体的衍射波合波的振幅为:()iaggie柱体rrR则相应的相位角变为:则相应的相位角变为:2.2 ().()K rgsrR非理想晶体的

46、衍射衬度非理想晶体的衍射衬度51与理想晶体的振幅与理想晶体的振幅=F =F n n e e-2i sr-2i sr相比较,我们发相比较,我们发现由于晶体的不完整性,衍射振幅的表达式内出现现由于晶体的不完整性,衍射振幅的表达式内出现了一个附加因子了一个附加因子e e-2i -2i g g R R ,如令,如令=2=2g g R R ,即,即有一个附加因子有一个附加因子e e-i -i ,亦即附加位相角,亦即附加位相角=2 =2 g g R R 。所以一般的说,附加位相因子。所以一般的说,附加位相因子e e-i -i 的引入的引入将使缺陷附近点阵发生畸变的区域(应变场)内的将使缺陷附近点阵发生畸变

47、的区域(应变场)内的衍射强度有别于无缺陷的区域(相当与理想晶体)衍射强度有别于无缺陷的区域(相当与理想晶体)从而在衍射图象中获得相应的衬度。从而在衍射图象中获得相应的衬度。非理想晶体的衍射衬度非理想晶体的衍射衬度52晶体缺陷分析晶体缺陷分析这里所指的晶体缺陷由三种:这里所指的晶体缺陷由三种:层错、位错、第二相粒子在基体上所造成的畸变。层错、位错、第二相粒子在基体上所造成的畸变。1 1)层错)层错堆垛层错是最简单的面缺陷,层错发生在确定的晶堆垛层错是最简单的面缺陷,层错发生在确定的晶面上面上, ,层错面上、下方是位向相同的两块理想晶体,层错面上、下方是位向相同的两块理想晶体,但下方晶体相对于上方

48、晶体存在一个恒定的位移但下方晶体相对于上方晶体存在一个恒定的位移R R即即层错的缺陷矢量层错的缺陷矢量, ,缺陷矢量的方向和层错切变矢量相缺陷矢量的方向和层错切变矢量相一致。一致。如在面心立方晶体中,层错面为如在面心立方晶体中,层错面为111111,其位移矢,其位移矢量量R=R=1/31/3111111或或1/6 1/6 112112. .53平行层错平行层错倾斜层错倾斜层错层错层错54(1) (1) 平行于薄膜表面的层错平行于薄膜表面的层错无层错区域,衍射波振幅:无层错区域,衍射波振幅:存在层错区域,衍射波振幅:存在层错区域,衍射波振幅:20( )tiszgA tedz121220( )gt

49、tisziaisztA tedzeedz显然在一般情况下,两种条件下的衍射波振幅不同,衍射图像显然在一般情况下,两种条件下的衍射波振幅不同,衍射图像存在层错的区域与无层错区域出现不同的亮度,即构成衬度。存在层错的区域与无层错区域出现不同的亮度,即构成衬度。层错区显示为均匀的亮区或暗区。层错区显示为均匀的亮区或暗区。层错层错55层错衬度来源分析(层错衬度来源分析( fccfcc晶系):晶系):如果如果R=R=1/3,1/3,由此得到的附加相位角:由此得到的附加相位角:2g2ghklhkl. . 1/3= 1/3= 2/3(h+k+l)2/3(h+k+l)同理,如果同理,如果R=R=1/6,1/6

50、,由此得到的附加相位角:由此得到的附加相位角:2g2ghklhkl. . 1/6= 1/6= /3(h+k+2l)/3(h+k+2l)式中,式中,g ghklhkl为衍射晶面的倒易矢量,为衍射晶面的倒易矢量,h h、k k、l l表示晶面衍射指表示晶面衍射指数。因为面心立方结构因数不等于零的条件是数。因为面心立方结构因数不等于零的条件是h h、k k、l l必须必须全奇或全偶。全奇或全偶。在在111 111 层错面上计算出的层错面上计算出的只有两类:只有两类:第一类:第一类: 2n(n=0, 2n(n=0, 1, 1, 2 2) )第二类:第二类: 2n/3(n=0, 2n/3(n=0, 1,

51、 1, 2 2) )层错层错56当当2n2n,具有层错的晶柱底部计算出的衍射波振幅和,具有层错的晶柱底部计算出的衍射波振幅和理想晶体晶柱底部的衍射波振幅在大小上并无差别,因此层理想晶体晶柱底部的衍射波振幅在大小上并无差别,因此层错不显示衬度。错不显示衬度。2n/32n/3,含有层错的晶柱底部衍射波振幅大小将不同,含有层错的晶柱底部衍射波振幅大小将不同于理想晶体晶柱底部的衍射波振幅,从而在衬度上出现差别。于理想晶体晶柱底部的衍射波振幅,从而在衬度上出现差别。在面心立方晶体中,只有选择合适的衍射晶面,使附加相位在面心立方晶体中,只有选择合适的衍射晶面,使附加相位角角2n/32n/3时,才能在荧光屏

52、上看到层错。由此可见,时,才能在荧光屏上看到层错。由此可见,在在TEMTEM下看不到层错,并非不存在层错,而是由于选择了下看不到层错,并非不存在层错,而是由于选择了2n2n的衍射晶面而造成的。的衍射晶面而造成的。层错层错57(2) (2) 倾斜于薄膜表面的层错倾斜于薄膜表面的层错由运动学理论可知:倾斜于薄膜表面的堆积层错与其它的倾斜由运动学理论可知:倾斜于薄膜表面的堆积层错与其它的倾斜界面界面( (如晶界如晶界) )相似,显示为平行于层错与上、下表面交线的亮相似,显示为平行于层错与上、下表面交线的亮暗相间的条纹,其深度周期为暗相间的条纹,其深度周期为t tg g=1/s=1/s。不锈钢中与膜面

53、倾斜相交的层错衍衬图像不锈钢中与膜面倾斜相交的层错衍衬图像图中,层错面是十分图中,层错面是十分规则的,其内的条纹规则的,其内的条纹整齐平行,条纹的方整齐平行,条纹的方向和层错面与膜面的向和层错面与膜面的交线交线( (迹线迹线) )一致。一致。层错层错58 钛合金中的层错组态层错层错59层错层错602)位错的衍射衬度效应刃位错b bu ub bu u位错位错61螺位错u ub bu u/b b位错位错62位错时晶体中原子排列的一种特殊组态位错时晶体中原子排列的一种特殊组态, ,处于位错附处于位错附近的原子偏离正常位置而产生畸变近的原子偏离正常位置而产生畸变, ,但这种畸变与层但这种畸变与层错情况

54、不同错情况不同. .位错周围应变场的变化引入的附加相位位错周围应变场的变化引入的附加相位角因子是位移偏量角因子是位移偏量R R的连续分布函数。的连续分布函数。不管是何种类型的位错不管是何种类型的位错, ,都会引起在它附近的某些晶都会引起在它附近的某些晶面的转动方向相反面的转动方向相反, ,且离位错线愈远且离位错线愈远, ,转动量愈小转动量愈小. .如如果采用这些畸变的晶面作为操作反射果采用这些畸变的晶面作为操作反射, ,则衍射强度将则衍射强度将受到影响受到影响, ,产生衬度产生衬度. .位错引起的衬度位错引起的衬度63与膜面平行的螺位错线使晶柱PQ畸变位错引起的衬度位错引起的衬度64例子例子( (螺位错衬度的产生及其特征螺位错衬度的产生及其特征) ):完整晶体的衍射波振幅:完整晶体的衍射波振幅:有螺位错线时的衍射波振幅:有螺位错线时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论