




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等腰三角形性质的应用等腰三角形性质的应用 临海中学初二备课组教学目标:1、掌握等腰三角形的性质,并能灵活应用他们。并让学生获得“如何作辅助线”的体验2、培养学生观察分析图形和发散思维解决问题的能力。3、渗透对立统一,以不变应万变的辨证唯物主义思想方法和转化的数学思想。本节重点:本节重点: 灵活掌握等腰三角形的性质灵活掌握等腰三角形的性质本节难点:本节难点: 如何添加辅助线如何添加辅助线复习:1、等腰三角形的性质2、两条线段垂直的判断方法。 已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。求证:DEDC。DABCEABCEDABCE图1F已知:如图,在
2、ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。求证:DEDC。证明:延长DE交BC边于F点(证明略)DABCENF图2已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。求证:DEDC。证明:过C点做AB的平行线,交DE的延长线于N点(证明略)DABCEGF图3已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。求证:DEDC。证明:过B点做AC的平行线,交DE的延长线于G点(证明略)DABCEQ图4已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连
3、结DE。求证:DEDC。证明:过B点做DE的平行线,交CA的延长线于Q点(证明略)DABCE图5R已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。求证:DEDC。证明:过C点做DE的平行线,交BA的延长线于R点(证明略)FDBCAEO已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。求证:DEDC。证明:过D点做BC的延长线,交CA的延长线于O点,并延长DE交BC于F点(证明略)DABCEP图6已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。求证:DEDC。证明:过
4、A点做BC的平行线,交DE于P点(证明略)DABCEFK图7已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。求证:DEDC。证明:证明:过过E点做点做BC的平的平行线,交行线,交AB于于K点,并延长点,并延长DE交交BC于于F点点(证明略)(证明略)DABCEMF图8 已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。求证:DEDC。证明:过E点做AB的平行线,交BC于M点,并延长DE交BC于F点(证明略)DABCEF FH图9已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,
5、连结DE。求证:DEDC。证明:过D点做AC的平行线,交BC的延长线于H点,并延长DE交BC于F点(证明略)DABCEFR图10已知:如图,在ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。求证:DEDC。证明:过A点做DE的平行线,交BC于R点,并延长DE交BC于F点(证明略)图中AR这条线段的引出可以看成是:1、过A点做DE的平行线2、过A点做BC的垂线3、BAC的角平分线4、BC边的中线DABCEABCEABCEDBCEADDDABCEDABCE除了第一种辅助线的作法外,大部分同学能发现其余的辅助线都是作了AB的平行线,AC的平形线,BC的平行线和DE的平行线,。练习第一题已知,如图,于,求证:发散思考:此题是否可以通过加倍,另作?已知:如图,中,点在上,点在的延长线上,且,连结,交于求证:发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 26958.1-2025产品几何技术规范(GPS)滤波第1部分:概述和基本概念
- GB/T 45694-2025天然纤维增强塑料复合(NFC)板试验方法
- 氯气专用球阀项目投资可行性研究分析报告(2024-2030版)
- 税务师考试与CPA课件的适用性
- 中国煤气分析仪行业投资分析及发展战略研究咨询报告
- 2025年中国健脑生发器行业市场发展前景及发展趋势与投资战略研究报告
- 2025年 宁夏公务员考试行测试题附答案
- 2025年 黑龙江省东北石油大学招聘考试笔试试题附答案
- 2021-2026年中国蓝莓酒市场发展前景预测及投资战略咨询报告
- 2025年中国计算机工作站市场深度评估及投资方向研究报告
- 2022-2023学年安徽省阜阳市高一下学期期末教学质量统测数学试卷(解析版)
- 2023-2024学年江西省南昌市南昌县人教PEP版五年级下册期末质量检测英语试卷
- 锁骨骨折的护理查房
- 印度博帕尔甲基异氰酸酯泄漏事故回顾分析
- 广东省佛山市顺德区2023-2024学年七年级下学期期末语文试题(原卷版)
- 部编人教版六年级上册语文全册教学课件+单元复习课件
- 【新教材】苏科版(2024)七年级上册数学第1-6章全册教案设计
- 车辆维修保养服务 投标方案(技术方案)
- 陕西省西安市雁塔区2023-2024学年六年级下学期期末语文试卷
- 加油站会员体系设计与运营策略
- 精索静脉曲张教学
评论
0/150
提交评论