用函数观点看一元二次方程_第1页
用函数观点看一元二次方程_第2页
用函数观点看一元二次方程_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.武屯镇初级中学 学科课堂设计活页 第 周上课时间: 星期 课题:用函数观点看一元二次方程 课时:1 设计人:丁仙茹学习目标:1 通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。2 使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。【知识回顾】1 二次函数的一般形式是_;一元二次方程的一般形式是_2已知直线y5xk与抛物线yx23x5交点的横坐标为1,则k_,交点坐标为_3当m_时,函数y2x23mx2m的最小值为【自主先学】问题 如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,

2、球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h20t5t2。考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t5t2。所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。从上面可以看出。二次函数与一元二次方程关系密切。【展示点拨】分组探究画出

3、二次函数(1)yx2x2;(2) yx26x9;(3) yx2x1。(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗? 归纳 一般地,从二次函数yax2bxc的图象可知,(1)如果抛物线yax2bxc与x轴有公共点,公共点的横坐标是x0,那么当xx0时,函数的值是0,因此xx0就是方程ax2bxc0的一个根。(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。思考 : 若

4、二次函数yax2bxc的图象与x轴无交点,试说明,元二次方程ax2bxc0和一元二次不等式ax2bxc0、ax2bxc0的解的情况。【分层反馈】 【基础达标】1二次函数yax2bxc(a0)与x轴有交点,则b24ac_0;若一元二次方程ax2bxc0两根为x1,x2,则二次函数可表示为y_2若二次函数yx23xm的图象与x轴只有一个交点,则m_3若二次函数ymx2(2m2)x1m的图象与x轴有两个交点,则m的取值范围是_ 【能力提高】4 已知抛物线yax2bxc与x轴的两个交点的横坐标是方程x2x20的两个根,且抛物线过点(2,8),求二次函数的解析式【学习反思】【课后巩固】(一)基础知识部分

5、:1若二次函数yax2bxc的图象经过P(1,0)点,则abc_2若抛物线yax2bxc的系数a,b,c满足abc0,则这条抛物线必经过点_3关于x的方程x2xn0没有实数根,则抛物线yx2xn的顶点在第_象限4已知抛物线yax2bxc的图象如图所示,则一元二次方程ax2bxc0( )A没有实根B只有一个实根C有两个实根,且一根为正,一根为负D有两个实根,且一根小于1,一根大于25一次函数y2x1与二次函数yx24x3的图象交点( )A只有一个B恰好有两个C可以有一个,也可以有两个D无交点6函数yax2bxc的图象如图所示,那么关于x的方程ax2bxc30的根的情况是( )A有两个不相等的实数

6、根B有两个异号实数根C有两个相等的实数根D无实数根7二次函数yax2bxc对于x的任何值都恒为负值的条件是( )Aa0,D0Ba0,D0Ca0,D0Da0,D08直线y4x1与抛物线yx22xk有唯一交点,则k是( )A0B1C2D19二次函数yax2bxc,若ac0,则其图象与x轴( )A有两个交点B有一个交点C没有交点D可能有一个交点10yx2kx1与yx2xk的图象相交,若有一个交点在x轴上,则k值为( )A0 B1 C2 D(二)能力提升部分:1二次函数yax2bxc(a0,a,b,c是常数)中,自变量x与函数y的对应值如下表:x10123y21212(1)判断二次函数图象的开口方向,并写出它的顶点坐标;(2)一元二次方程ax2bxc0(a0,a,b,c是常数)的两个根x1,x2的取值范围是下列选项中的哪一个_2m为何值时,抛物线y(m1)x22m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论