基于单片机的汽车空调控制系统设计(共39页)_第1页
基于单片机的汽车空调控制系统设计(共39页)_第2页
基于单片机的汽车空调控制系统设计(共39页)_第3页
基于单片机的汽车空调控制系统设计(共39页)_第4页
基于单片机的汽车空调控制系统设计(共39页)_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上1 绪论1.1 课题背景及意义汽车空调作为一种舒适性空调,不仅是人民生活水平提高的标志,也是提高汽车市场竞争能力的重要手段。随着科学技术的发展和人民生活水平的提高,人们对汽车空调的温度控制性能提出了更高的要求。国外一些大汽车公司的高档汽车上纷纷装有全自动的空调系统,而国内大部分高档汽车的空调控制器是进口的,目前还没有自主开发的具有自主知识产权的汽车空调自动控制器。总体来看,我国目前汽车空调系统的电子化程度较低,大多数仍采用手动控制或简单的位式控制。手动控制一方面会出现车内温度与乘员舒适要求相差很大,不能满足舒适性和节能性的要求;另一方面容易分散驾驶员的注意力,降低行车

2、的安全性。手动控制己成为汽车空调进一步发展的瓶颈问题。而国外一些高档汽车上已经配有全自动汽车空调系统,并且对这些先进的技术率先申请了专利,对知识产权进行了保护,因此无法破解其核心技术,这样就形成了引进-落后-再引进-落后的恶性循环,严重阻碍了我国汽车工业的发展。随着我国加入WTO和全球贸易大市场的形成,国外先进的汽车空调控制技术对国内汽车工业造成很大的冲击和压力,汽车工业又面临着新的机遇和挑战。我们只有自主开发适合我国交通、气候的汽车空调全自动控制器,形成具有自主知识产权技术,制订出汽车空调控制器的产品标准,才能提高我国汽车工业整体水平,否则就会在竞争中失败,因而 加紧汽车空调全自动控制系统的

3、研究势在必行。目前,我国汽车保有量己超过1200万辆,汽车年产量约110万辆,汽车空调市场有着广阔前景。而现在进口汽车空调控制器的价格较高,而实际的生产成本较低,随着人民生活水平的提高和汽车工业的发展,全自动控制的空调汽车由于具有较好的舒适性和节能性以及方便驾驶员操作等优点将会越来越受到人们喜爱,因而我们必须不失时机地抓住这个机遇,自主开发研制先进的汽车空调控制系统,不仅会产生巨大的经济效益,而且对我国的经济建设,汽车工业的发展都具有促进作用。在对全合一空气混合型的汽车空调系统进行调研的基础上,通过模糊控制策略和软硬件系统的研究,设计出汽车空调全自动控制系统中的核心部分智能温控系统。1.2 国

4、内外研究现状和分析我国现有主要汽车空调生产厂家多家,其中绝大部分是引进国外技术生产线和生产设备,还有些是中外合资企业,国内汽车空调技术的研究和开发特别在自动控制方面与国外的差距很大,由于没有掌握核心技术,导致产品缺乏竞争力,难以满足整车企业的系统化、模块化采购。另外在温度控制方法方面,学术界普遍认为模糊控制和神经网络等理论适用于描述非线性系统。对模糊理论与传统控制理论的关系学术界进行了很多的讨论1。1.2.1 国外研究现状国外一些大汽车公司的汽车空调系统代表了全自动空调的最高水平。目前,美国,欧洲,日本等汽车工业发达国家的汽车公司已经相继开发出各自的自动空调系统1。通用汽车公司某型汽车车身计算

5、机模块(BCM)控制的空调系统是较典型自动空调系统。高模块监视高压管路、低压管路的温度以及蓄压罐的压力发动机冷却水温等信号。如果系统不在设定的范围内工作,BCM将压缩机电磁离合器脱离。该系统用一个双向电动机调节混合风门开度,并用5个操纵机构分别控制各个模式风门和加热器热水阀,还用功率模块控制鼓风机的转速。根据驾驶员输入的温度、车室内外温度及制冷剂低压管路温度,BCM计算出气流分送模式,鼓风机转速及混合风门开度,然后进行相应的控制2。而克莱斯勒公司的某些汽车空调还以占空比的方式对压缩机离合器进行控制。日本丰田某型汽车自动空调监测车内外温度、蒸发器温度、冷却水水箱温度以及阳光辐射强度、压缩机转速等

6、参量,通过控制压缩机磁吸、风机转速和温度混合风门、新风风门和模式风门的伺服电机,进行车室温度调节。自动功能下该空调ECU(电子控制单元)首先计算送风温度,并根据送风温度控制风机转速、混合风门开度、压缩机启停及送风模式2。模糊控制在国外发展非常迅速,在IEEE上有关于模糊系统的专刊,而且定期举行模糊系统协会国际会议。在欧美、日本等地,模糊控制理论迅速应用到了商业产品中去,其中就包括日本把模糊控制成功应用到地铁和各种家电产品的实例2。现在在国外的模糊控制理论研究基本上在每个领域上都取得了成功,当中包括工业温度控制,大型空调系统控制和电冰箱温度等。在多输入输出非线性系统领域取得了骄人的成功,突破了传

7、统控制方法的局限2。1.2.2 国内研究状况从市场占有情况看,由于目前大多数汽车空调生产未上规模,加上总类繁多,国内汽车空调销售市场仅为几家所垄断。比较而言,国内的汽车空调控制要稍逊一些。广州标致汽车空调的电子控制系统根据车内温度、环境温度、蒸发器温度、送风温度及人为设定值、通过控制风机转速、压缩机离合器开合及热水阀大小来进行温度调节。奥迪100汽车的空调系统模式风门是手控的,鼓风机转速由继电器控制,压缩机离合根据蒸发器温度控制。奥拓汽车空调就更为简单,没有舒适性控制用的传感器,对室温靠人为控制。另外一些形式的汽车空调还未产品化。有人认为光线的入射角会对热负荷影响很大,而对此制定了一套相适应的

8、控制策略。也有这种研究如何通过计算确定送风量、送风温度的分布是很不均匀的,并且均匀分布的温度场也会由于人的舒适感不同而产生舒适性差异。对此有人研究针对前排、后排车座的双蒸发器运行情况,并进行相应的控制。还有人针对司机和乘客的个体舒适性用不同出口进行控制。通过控制压缩机启停来控制车厢内温度也需进行相应的控制才能达到更优。国内80年代就参加到模糊控制领域的研究讨论当中,到了90年代和最近几年,己经在模糊控制等智能控制领域得到了较成熟的发展。在理论研究方面国内研究涉及了基于传统PID的模糊控制,基于神经模糊网络模糊控制和时空混沌的自适应模糊控制等。可以说国内的理论研究已经朝纵深发展,理论体系也比较完

9、善4。而在实践应用领域,模糊控制在近几年几乎涉及到各个重、轻工业领域。在空调制冷系统,温度控制系统和各种家庭小电器中都可以看见用模糊控制方法实现优化处理的应用文章5。国内汽车空调生产企业如何利用电子技术提升传统空调产品的技术含量走上专业化、规模化经营之路,将成为我国未来几年汽车空调业迫切需要解决的问题。 1.3 汽车空调的特点及其控制系统的难点 与一般建筑空调相比,汽车空调有其特殊性。首先,汽车是个移动物体,外界气候条件变化大,车外热负荷变化大,以至于难以确定标准的车外设计参数。其次,由于汽车车室内乘员密度大,人体热量大,要求的制冷能力大,汽车开启空调与乘员进入车内往往是同一时刻,乘客要求一进

10、入车室,在很短的时间内就享受到空调效果;而汽车车身在开空调之前的蓄热量是很大的。这几种因素导致汽车空调所要求的负荷大,要求降温(或升温)迅速。因此,汽车空调机组的制冷(或采暖)能力应该比房间空调大的多。另外,汽车是高速移动的物体,与外界对流热交换量大,而且车身隔热困难,玻璃门窗所占面积又大,车室内得热量(或失热量)大。如果汽车长时间直接暴露在太阳下(或风雪下),进入车室的热负荷(或冷负荷)比一般房间要大得多。夏季汽车长时间停在烈日下,车内温度会上升到50以上。汽车的使用环境非常严酷,这些环境因素往往造成汽车电子装置的性能恶化,甚至不能完成规定的功能或损坏,出现可靠性故障。因此与一般控制系统相比

11、,汽车空调控制系统也有其特殊要求2。首先,要满足温度环境的要求。汽车外部的环境温度最高为50,最低为-40,但汽车内的工作环境却因部件的位置不同而相差极大。其次,要满足振动冲击环境要求,汽车零部件必须承受由不良路面引起的较大的振动和冲击。 还有,要满足电气环境要求。汽车电源波动和瞬时过电压等将形成较坏的电气环境。 1.4 课题的提出与研究内容 本课题的研究是针对我国现有高档汽车上装置的自动空调控制系统基本上依赖进口,国产化自动控制系统在汽车系统中的应用性研究较少,迫切需要对汽车空调控制器实现电子自动化、国产化为目标而产生的。因此,本课题的研究内容为: 1) 通过对汽车空调工作原理和空调总成的结

12、构分析,设计了以AT89C52为核心的单片机控制系统,并对控制器硬件电路部分做了设计。 2) 建立实现模糊控制算法的控制系统6。阐述了如何实现对汽车空调系统的自动化模糊控制。 3) 温度的检测采用高精度的集成温度传感器AD590实现。 4) 编程过程中,采用模块化的设计方法,对各个子模块分别进行编程、调试,再按控制要求将它们连接起来,进行调试、分析。 2 汽车空调系统工作原理 2.1 汽车空调系统基本工作原理 汽车空调基本功能是通过人为的方法使车厢的温度降低和升高,达到使人体感到舒适的温度环境。高级汽车空调还包括对车厢内空气净化、控制二氧化碳含量和控制空气湿度等高级功能。一般汽车空调系统都可以

13、分为采暖系统和制冷系统两部分7。 制冷系统主要由压缩机、冷凝器、膨胀阀和蒸发器组成。其制冷原理是利用液态制冷剂吸热产生冷效应。首先,低压(低温)液态制冷剂进入用来冷却车内空气的蒸发器,制冷剂加热在定压下气化。由于制冷剂在管内气化时的温度低于管外空气的温度,因此能自动地吸取车内空气中的热量,使空气温度降低,产生冷效应。然后,气化了的制冷剂通过压缩机压缩,变成高于车外空气的高温高压气体。这时,制冷剂通过在冷凝器将热量释放到车外,制冷剂放热就变成了高压液态冷凝剂。最后,经过节流阀,恢复到低压(低温)液态。所以,当空调要进行制冷时,必须开启压缩机使制冷剂循环,从而降低车内温度。采暖系统是由暖风散热器、

14、暖水阀和风机组成。由于汽车行驶时发动机产生大量热量,一般小型汽车空调都采用发动机余热采暖。发动机冷却水通过暖水阀流入暖风散热器,从而升高通过暖风散热器的空气。所以,当空调要进行加热时,必须开启暖水阀。2.2 汽车空调的总成结构汽车空调系统总成是采用冷暖完全合一型,其风道系统如图2.1所示8。2车内进风1车外进风3内外循环风门 4鼓风机5混合风门6制冷蒸发器9除霜风口10下吹风口7暖风散热器11前吹风口8风向风门图2.1 全合一型汽车空调结构内外循环风门由内外循环电磁阀控制,当内外循环电磁阀闭合时,汽车空调处于内循环状态,这个时候只有车内回风能够进入空调风道。反之,当内外循环电磁阀开时,空调处于

15、外循环状态,这个时候不仅仅车内回风能够进入空调风道,车外空气也进入空调风道,也就制冷(加热)处理前空气是车内回风和车外新鲜空气的混合气体。鼓风机由鼓风机调速电路控制,其作用是推动空气在空调风道里流动,在全和一型空调中,它同时也起了是制冷蒸发器风扇和暖风散热器风扇的作用。制冷蒸发器连接制冷压缩机,压缩抓由压缩机电磁阀控制。当压缩机电磁阀吸合,压缩机开始工作,蒸发器就能从流过的空气中吸取热量,从而使空气降温。混合风门开度由混合风门电机控制。混合风门负责控制空气经过蒸发器和暖风散热器的量,也就是控制经过两种处理空气的混合程度。暖风散热器由暖水电池阀控制,当暖水电磁阀吸合,发动机冷却水流过暖风散热器,

16、这样就可以通过发动机余热进行热交换,将经过散热器的空气加热。混合风门开度由混合风门电机控制。混合风门负责控制空气经过蒸发器和暖风散热器的量,也就是控制经过两种处理空气的混合程度。风向风门由风向风门电机控制。风向风门可以控制空调出风口的出风方式,也就是控制经过处理的空气从除霜风口、下吹风口和前吹风口吹出。综上所述,整个汽车空调控制系统可以通过六个受控装置来控制,它们分别是内外循环电磁阀、鼓风机电路,混合风门电机、压缩机电磁阀、暖水电磁阀和风向风门电机。全合一空气混合型的汽车空调系统,其类型是制冷与加热使用一套温度控制系统,通过混合风门的开度来调节冷热空气的混合。混合风门是全合一空气混合型汽车空调

17、系统最重要的温度调节机构,起作用是将一定量空气按不同比例分配后分别流经制冷蒸发器和暖风散热器,然后再混合,从而调节出风温度。因此,将对混合风门的开度调节作为汽车空调温度调节的主要手段。3 车室温度模糊控制的研究自动控制包括传统的控制技术和智能控制技术,智能控制是控制理论发展的高级阶段。由于人体舒适感的模糊性和汽车空调系统的复杂性,人们难于建立关于汽车空调自动控制的控制目标和控制对象精确的数学模型。这样,以精确数学模型为必要条件的传统控制理论应用于汽车空调系统存在许多不能解决的问题。而模糊控制作为一种最广泛应用智能的控制技术之一,具有不需要知道控制目标和对象的精确数学模型,适于具有大滞后和非线性

18、时变系统等优点而被人们广泛关注9。3.1 模糊控制理论基础模糊控制系统基本原理在实际生产过程中,有经验的操作人员,虽然不懂被控对象或被控过程的数学模型,却能凭借经验采取相应的决策,很好地完成控制过程。这里人的经验可以用一系列的具有模糊性的语言来表达,这就是模糊条件语句。再用模糊推理对系统的实时输入状态观测量进行处理,则可产生相应的控制决策,这就是模糊控制9。最基本的模糊控制系统结构如图3.1所示。从图中可以看出,它和传统的控制系统结构没有多大区别,只是用模糊控制器取代传统的数字控制器。在模糊控制系统中,模糊控制器的作用在于通过电子计算机,根据精确量转化而来的模糊输入信息,按照语言控制规则进行模

19、糊推理,给出模糊输出判决,将其转化为精确量,对被控对象进行控制作用10。给定输入R输出Y控制u偏差e+=被控对象模糊控制器-图3.1 模糊控制系统结构图一般说来,模糊控制器有三个主要的功能模块。1) 模糊化。将变量的实际变化范围化分成若干等级,这些等级的全体成为变量的论域。在这个论域上定义相应的语言变量值。将实际变化范围内的输入值转换成论域范围内的有关等级值的过程称为模糊化过程。2) 模糊控制推理及控制规则。模糊控制器的控制规则是基于手动控制策略,手动控过程一般是通过对被控对象的一些观测,操作者再根据己有的经验和技术知识,进行综合分析并做出控制决策,调整加到被控对象的控制作用,从而使系统达到预

20、期的目标。可以采用微机完成这个任务,从而代替人的手动控制,实现所谓的模糊自动控制。利用语言归纳手动控制策略的过程,实际上就是建立模糊控制器的控制规则的过程。也就是说,这些手动控制规则的经验总结就成了模糊控制规则,并用模糊条件语句来表述。3) 精确化。模糊控制器的推理结果是模糊量,由于模糊量是一个模糊子集,而实际被控对象所需的控制信号是精确值,所以模糊控制器的推理输出是不能直接用作实际控制的,为了从推理结果中取得用于控制的精确量,需要对模糊推理结果进行一定的处理。对模糊量进行处理,求取一个能恰当的反映模糊量的精确值的过程称为精确化。有时也称为反模糊化,也称之为模糊决策或模糊判决。模糊量的精确化有

21、很多方法,其中较常用的主要有以下几种:最大隶属度法、中位数法和面积重心法。模糊控制的特点模糊控制不用建立数学模型,模糊控制获得巨大成功的主要原因在于它具有如下一些突出特点:l) 适用于不易获得精确数学模型的被控对象,其结构参数不很清楚或难以求得,只根据实际系统的输入输出结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。2) 模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,构成了被控对象的模糊模型。3) 模糊控制实际上是一种非线性控制,从属于智能控制的范畴。该系统尤其适用于非线性,时变,滞后系统的控制。4) 抗干扰能力强,响应速度快,并对系统参数的变化有较强的鲁

22、棒性。正因为模糊控制有这么多优于现代控制的特点,本课题中温度的控制在系统处于过渡过程时采用了模糊控制技术,汽车空调温度控制系统的控制执行机构是混合风门,控制目标是使车内温度达到设定的温度11。3.2 模糊控制器的设计3.2.1 模糊控制器的结构设计 模糊控制器的结构设计是指确定模糊控制器的输入变量和输出变量5。从理论上讲,模糊控制器的维数越高,即输入变量个数越多,控制越精细。但维数过高,模糊控制规则变得过于复杂,控制算法实现相当困难。所以本系统中选用两维模糊控制器11。由于温度偏差变化率即能反映外界环境对温度的影响,同时也反映车厢内人员的状态和变动情况,又考虑到系统的动态特性,装置的实施等因素

23、,所以选定温度的偏差及温度偏差变化率为模糊控制器的输入变。输入变量为温度偏差e和偏差变化率e。,输出变量为控制量u,即混合风门的开度,风门开度越大,经过加热器的风就越多,温度就上升得越快。 3.2.2 精确量的模糊化精确量模糊化就是把物理量的精确值转换成语言变量值。在以人的经验为基础的模糊控制中,一般将模糊控制器的输入输出变量的状态划分为“正大、正中、正小、零、负小、负中、负大”七个档次来描述,分别用英文字母PL,PM,PS,0,NS,NM,NL表示之。对于系统偏差,描述其状态时,还常把“零”分为“正零”和“负零”,分别用P0,N0表示之。在汽车空调智能温控系统中,温度偏差为温度设定值和温度测

24、量值之差。我国南北温差大,同地冬夏温差也十分大,在一个典型的温带海洋性气候的沿海城市,一年气温将在-1030之间徘徊。而按照医学研究结果,人感受的最佳环境温度为24±1。本文把温度设定值的范围定为15到28,定义温度偏差e的论域为20,20,温度偏差变化率ec的论域为4,4,风门电机的输出量u的论域为0%,100%(0%表示最大制冷,100%表示最大采暖)。对e,ec和u的模糊状态E,EC和U的整数论域分别定义如下:E和EC的论域为:-4,-3,-2,-1,0,1,2,3,4U的论域为:-5,-4,-3,-2,-l,0,l,2,3,4,5因此,量化因子Ke=4/20=0.2,Kec=

25、4/4=l,Ku=l/10=0.1。下面把物理量的精确值转换成语言变量值,一般对语言变量分5到10档,整数论域为档级数的1.5到2倍。如果档级过少,语言变量值过于粗糙,对控制的质量有不良影响。如果档级过多,则语言变量过细,关系矩阵过大,占用内存太多。针对汽车空调温度控制模糊控制器,将E,EC和U的模糊语言定义如下:E和EC的模糊集均为:NB,NS,ZE,PS,PB;U的模糊集为:NB,NM,NS,NO,PO,PS,PM,PB。隶属度函数的建立有一定的原则,模糊控制过程对于语言变量值的隶属度函数形状并不敏感,只是对隶属度函数的范围有一定的敏感,所以在控制中选用三角形或梯形的隶属函数是较为合适的,

26、因为有利于计算隶属度。3.2.3 模糊控制规则的确定本系统采用IF Ai and Bi then Ci为模糊控制规则,其中Ai为温差E的模糊子集,Bi为温差变化率EC的模糊子集,Ci为风门开度增量U的模糊子集12。根据车厢温度变化的参数特点和现场实际操作经验及专家的知识理论,总结出表3.1所示的模糊控制规则表。表3.1 模糊控制规则表ECCENBNS0 PS PB  NBNBNMNS00NSNMNM00PS 0NSNS 0 PS PMPSNSOPMPB PBPB0PSPMPBPB建立模糊控制规则的基本思想:当误差大或较大时,选择控制量以尽快消除误差为主,而当误差较

27、小时,选择控制量要注意防止超调,以系统的稳定性为主要出发点。以误差为正大时,误差变化为正大为例,这时误差有增大的趋势,为尽快消除己有的正大误差并抑制误差变大,所以控制量取正大,即使风门开度达到最大,增加通过加热器的风量。3.2.4 模糊量的精确化为了对被控对象施加精确的控制,还需要将模糊量U转换为精确量u,即对模糊量进行清晰化处理。模糊量的精确化也就是求取模糊控制表。求取模糊控制表必须把输入的所有情况都考虑到,求取模糊控制表必须把输入的所有情况都考虑到,下面以系统输入偏差E的论域值为1,偏差变化率EC的论域值为2为例来介绍怎样确定模糊输出量U。偏差E为1,偏差变化率EC为2时,对于偏差量有:Z

28、E(1)=0.2,PS(1)=0.4,其余模糊集的隶属度都为0。对于输入的偏差变化率,有PS(2)=1,其余的模糊集的隶属度都为0。根据ZEE和PSEC在模糊状态控制表里可查得U=PM,同理,由PSE和PSEC可查出U=PB,即对于当前输入值,有两条控制规则是有效的:IF E=ZE and EC=PS then U=PMIF E=PS and EC=PS Then U=PB由以上控制规则,再根据L.A.Zadeh的模糊推理算法,得出实现模糊推理过程如下:首先取第一条规则中两个前件的隶属度的最小值,对后件的模糊集求截集,对于该控制规则求得的控制量的模糊截集有:PM(1,2)=min(0.2,1)

29、=0.2然后再取第二条规则两个前件的隶属度的最小值,对其后件的模糊集求截集,对于第二条规则所求得的控制量的模糊截集有:PM(l,2)=min(0.4,l)=0.4最后,把对应于当前输入值的所有有效规则推理所得的控制量的模糊截集相“并”,得到当前输出控制量的模糊集,再按重心法原则,对输出模糊量进行模糊判决,求出控制量u为:u=(1)×1+(2)×2+(3)×3+(3)×3+(3)×3/ (1)+ (2)+ (3)+ (4)+ (5)=(l×0+2×0.2+3×0.2+4×0.4+5×0.4)/(0

30、+0.2+0.2+0.4+0.4)=3.84由此可知,当输入e=1,ec=2时求得的控制量u的论域值为4,按以上方法,对论域x,y中的全部元素的所有组合计算出相应的以论域z元素表示的控制量变化值,并写成矩阵(u)。由该矩阵构成的相应的表格即模糊控制器的控制表。见表3.2。表3.2 模糊控制器的控制表CECE-4-3-2-10 12 3 4-4-5-4-3-2-10001-3-4-3-3-2-10011-2-3-3-3-201112-1-2-2-2-2011230-2-1-1-1122231-1-1-10132332100014334300012434440112344454 硬件电路设计4.1

31、 汽车全自动空调控制器硬件4.1.1 工作原理汽车全自动空调控制器实际上就是根据人们对空调控制器的设定值,控制汽车空调系统各个环节,使车厢内空调环境达到设定目标的电子控制设备。为了实现对汽车空调各个执行机构实现自动控制控制,必须要对车内环境状况做出监控。一般是采用安装在车内不同位置的各种传感器经过A/D转换成数字量,再传到微处理进行检测和决策。微处理根据检测的数据和温度设定值进行决策处理后,通过各个执行机构的驱动模块实现空调执行机构的改变,从而最终实现对车内环境的改变7。4.1.2 硬件组成汽车全自动空调控制器的核心部分,是由微处理器为核心的电子线路系统。包括主机和I/O接口设备。主机包括中央

32、处理器,主机依靠I/O接口设备来输入信息(键盘、传感器信号),输出指令控制命令、显示等8。微处理器并行I/O口扩展芯片键盘显示器温度传感器A/D处理系统监控及系统数据存储器串行通讯接口电路环形脉冲分配器驱动放大器变压整流稳压混合风门步进电机智能温控系统的硬件结构框图如图4.1所示。由图可知,智能温控系统的硬件主要由单片机、温度信号采集电路、人机接口电路、串行存储及系统监控电路和串行通信接口电路等几部分组成。图4.1 全自动空调控制器硬件组成图4.1的中心框CPU是中央控制处理单元,它根据程序储存器中存储的程序,一步步执行程序所规定的工作。这些工作包括:1) 各种数学运算和逻辑分析判断。运算分析

33、的原始数据可从数据存储器中读出,运算分析的中间结果和最终结果都可以存放在数据存储器中。2) 从输入接口中读出经过信号转换后的各种传感器的输入信号,并将这些信号以数字的形式存放于数据存储器中。传感器可以有模拟量、开关量等多种方式的输出信号,输入接口将这些信号都可以转换为数字信号,随时供CPU读出。3) 根据控制要求和存储于数字存储器中的分析计算结果,将对执行器的操作命令送到输出接口,输出接口根据所连接的执行器的种类将这些输出命令转换为相应的信号形式,使执行器执行相应的动作。4) 读取键盘状态,得到使用者的键盘操作状态,对它进行分析处理。根据程序要求或使用者的键入命令将相应的数据送到显示单元。5)

34、 从通讯接口读入数据并将其存储于数据存储器中。根据程序要求,将数据存储器中的有关数据送至通讯接口,实现通讯。4.2 单片机简介本系统选用ATMEL公司的AT89系列单片机中的AT89C52,AT89C52单片机是一种新型的低功耗、高性能且内含SK字节闪电存储器(FlashMemory)的8位CMOS微控制器,与工业标准MCS-51指令系列和引脚完全兼容。有超强的加密功能,其片内闪电存储器的编程与擦除完全用电实现,数据不易挥发,编程/擦除速度快。AT89C52芯片内部有6个中断源:两个外部中断INT0和INT1,三个定时器中断定时器0,1,2)和一个串行口中断。在本系统中涉及到AT89C52芯片

35、的中断源有五个:分别是外部中断INT1,定时/计数器T0、T1和T2以及串行口中断。下面就这五个中断源介绍如下:1) 关于外部中断的激活方式分为两种:一种是电平激活,另一种是边缘激活。这两种方式可以靠TCON寄存器中的中断方式IT1和IT0来控制。若ITX=O(X为0或1),则采用电平激活方式;若ITX=l,则采用边缘激活方式。本测控系统采用电平激活方式,也即是IT1=O,一旦IT1引脚的采样值为低电平,则TCON寄存器中的中断请求标志IE1被置1,以请求中断。2) 关于定时/计数器AT89C52有三个定时/计数器T0、T1和T2。他们都可以分别为定时器或计数器使用。选择定时器工作方式时,计数

36、输入信号是内部时钟,每隔一个机器周期使寄存器的值增加1。每个机器周期等于12个振荡器周期,故计数速率为振荡器频率的1/12。当采用12MHz的晶振时,计数速率为1MHz。对于定时器T0和Tl,通过寄存器TMOD、TCON来控制和选择定时/计数器的功能和操作模式。这些寄存器的内容靠软件设置,系统复位时,寄存器的所有位都被清零。而T2的工作是靠对TZCON寄存器进行软件设置而定义的。本系统采用定时T0来计算车厢温度采集的时间间隔,设置为工作方式1,即16位计数定时方式;定时Tl作波特率发生器使用,选择在工作方式2,即8位自动加载方式;定时器T2用于确定混合风门步进电机输入脉冲的频率,设置位16位常

37、数自动重装入的工作方式。4.3 温度信号采集电路的设计4.3.1 温度传感器的选择温度传感器的功能是进行温度信号的测量,在本文中采用集成温度传感器AD59013。AD590是美国ANALOGDEVCIE公司生产的专用集成温度传感器,属于电流输出型传感器。在一定温度范围内,它相当于一个高阻抗恒流源,其电流温度灵敏度为1A/K。它不易受接触电阻、引线电阻、电压噪声等的干扰。此外,它还具有体积小、测温精度高、线性度好和互换性强等特点。它与大多数其它形式的温度传感器相比,不存在线性化问题。与热电阻传感器相比不需要设计输入电桥和微弱信号放大器,与热电偶相比不需要进行冷端补偿,而且它是以高阻抗恒流源形式输

38、出,传输线上的压降不影响输出电流值,可以进行远距离传输。因此,它具有使用方便,抗干扰能力强的特点,特别适用于较远距离的温度巡回检测系统的设计方法。其主要技术指标为:1) 测温范围:-551502) 电流输出: 1A/K3) 电源电压:430v(直流)4) 精度:0.55) 重复性:±0.16) 输出阻抗:约为10M7) 长期漂移:±0.1/月4.3.2 温度传感器采样放大电路温度传感器采集的温度信号是模拟信号,需要进行A/D转换。某些结型半导体器件,例如二极管和三极管对温度呈现出敏感性,因而可用作温度敏感元件,因此可以利用这个特性,从它的输出电量的大小直接换算,而得到绝对温

39、度值。AD590便是根据此原理制造的一种半导体集成温度传感器。单片机的ADC0809芯片就是进行A/D转换的扩展芯片,它可以进行8路模拟信号的转换。但是ADCO809的输入信号是电压值,电压范围是OV5V,而AD590采集的温度信号是电流信号,电流的量值是微安级,所以AD590传感器采集的温度信号还不能直接输入到单片机中,需要进行电流/电压的转换,将电流信号转换为电压信号,并且对电压信号进行放大。以适应ADC0809芯片的输入要求。因此,本文采用10K电阻与AD59O串联对传感器进行电压取样。在电阻上得到与绝对温度成正比的电压输出Vo(1mV/K)。当温度变化时,AD59O会产生变化的电流,而

40、且AD590的输出是与绝对温度(K)成正比的,其在0时输出电流为273.2uA,为了使AD590的输出与摄氏温度()成比例关系14,作如下处理。经OPA1将电流转换成电压,再由OPA2做零位调整,最后由OPA3反向放大10倍。放大电路如图4.2。第一个步骤:先调AD59O的可变电阻器VR1。如以0为参考值,则应使电压输出为2.73V;第二个步骤:调整VR2,使0时OPAZ的输出为2.73-2.73=OV(反相,零位调整);第三个步骤:调VR3,使此时OPA3放大10倍。图4.2 采样放大电路另外,出于经济性和数据采集特点的考虑,本文决定采用多路开关来对8路传感器信号进行分时采集,这样可以使8路

41、信号共用一个放大器,而又不影响电路的特性。模拟开关CD4051的选通地址A0A2单片机的控制。就完成了从温度电流信号到A/D转换器标准电压信号的转换。4.3.3 模数转换电路前面已谈到AD590及其测量调理电路如何实现标准电压信号的输出,该电压信号为模拟量,而计算机只能接收数字量,为了温度信号的引入,必须进行模数转换。在本文中将利用AT89C52单片机和ADCO809模数转换芯片以及其他外围器件来构建A/D转换模块7。1) ADC0809主要特性。ADC0809是采用CMOS工艺制造的双列直插式单片8位A/D转换器。分辨率8位,精度7位,带8个模拟量输入通道,有通道地址译码锁存器,输出带三态数

42、据锁存器。启动信号为脉冲启动方式,ADC08O9内部没有时钟电路,故CLK时钟需由外部输入。每通道的转换需66到73个时钟脉冲,大约100到110us。工作温度范围为-40到+85。功耗为15mW,输入电压范围为0到5V,单一+5V电源供电。在ALE=l周期期间,模拟量的输入地址(A,B,C)存入地址锁存器;在ALE=O时,地址锁存。输入启动信号START的上升沿复位ADC08O9,它的下降沿启动A/D转换。EOC为输出的转换结束信号,正在转换时为0,转换结束时为1。OE为输出允许控制端,在转换完成后用来打开输出三态门,以便从ADC0809输出这次转换结果。2) AT89C52和ADCO809

43、芯片的接口电路a. 模数转换接口电路该模数转换电路模拟量输入通道INO处为温度传感器的电信号输入口,则对应地址线A,B,C都为0。经过ADC0809模数转换完成后,转换的数字量经数据输出线D7D0直接与单片机的P0口相连。b. ADC0809的模拟通道选择信号A,B,C分别接P2.4、P2.5和P2.6,而地址锁存允许信号ALE由P2.7控制,则模拟通道INO的地址为OFFFH。温度信号经过ADC0809转换以后,实际上是把O5V范围内变化的电压信号转换为0255范围变化的数字量,分辨率为22mV左右,即数字量从一变化到二时,表示电压上升22mV。A/D转换后得到的数字量数据应及时传送给单片机

44、进行处理,而数据传送的关键问题是如何确认A/D转换的完成,因为只有确认数据转换完成后,才能进行传送。为此可采用下述3种方式:定时传送方式:对于一种A/D转换器来说,转换时间作为一项技术指标是己知的和固定的。可据此设计一个延时子程序,转换启动后即调用这个延时子程序,延迟时间一到,转换肯定己经完成了,接着就可进行数据传送。查询方式:A/D转换芯片有表明转换完成的状态信号,例如ADC0809的EOC端。因此可以用查询方式,测试EOC的状态,即可确知传换是否完成,并接着进行数据传送。中断方式:把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。在本文中采用查询方式,EOC通过三

45、态输出门接到单片机的上P2.0。EOC的转换结束信号由P2.0控制与数据总线的P0.0相连。在查询方式下,EOC的查询地址为OFEFFH。4.4 人机接口的设计一LED显示和键盘LED显示和简易键盘是汽车空调智能温控系统的人机接口,车厢内的测量温度和设定温度由LED显示,通过键盘,可以实现系统的“软关机”和恢复“正常运行状态”,可以切换“自动”和“手动”工作模式。在“自动模式”下能够通过输入温度设定值,实现车厢温度的自动调节;而在“手动模式”下可以直接改变混合风的开度,实现车厢温度的人工调节。用8255扩展并行I/O接口构成的键盘和四位七段LED显示器接口电路。另外,接在P1.2上的指示灯L0

46、工作于混合风门的手动控制的模式下,当其发光时,表示风门处于最大开度位置。4.4.1 8255和A589C52的硬件连接8255是一种可编程的并行I/O接口芯片,其内部含有三个8位数据端口A、B、C,都可以选择作为输入或输出。有A组和B组两组控制电路,A组控制电路控制端口A和端口C的上半部分(PC7PC4);B组控制电路控制端口B和端口C的下半部分(PC3PC0)。8255中的三个端口以及内部的一个控制寄存器,由A1、A0来加以选择。另外,8255有三种工作方式:基本输入/输出方式(方式0),这种方式下,A、B、C端口任何一个都可以作简单的输入/输出操作,不需要应答联络信号;输入/输出方式(方式

47、l),端口A、B、C借助于C口一些引脚选通或应答或联络信号;带选通的双向总线输入/输出方式(方式2),此方式只适用A口,由PC3PC7提供选通、联络信号,实现总线数据的规化传送。为了简化接口,且不必引入反馈闭环控制,故本文采用方式0工作。在此,单片机的P0口线既作地址线使用又作为数据线使用,具有双重功能,因此需采用复用技术,对地址和数据进行分离,为此在构造地址总线时要增加一个8位锁存器,本文采用的地址锁存器是74LS373。首先由锁存器暂存并为系统提供低8位地址,其后P0线就作为数据线使用。即AT89C52的P0口输出的低8位地址增加74LS373后再与8255的AD0AD7相接,地址锁存用A

48、LE在74LS373锁存。其中,8255的端经锁存器接P0.7,A1、AO经锁存器接P0.1和P0.0。当P2.7为低电平时,访问8255的I/O口8。4.4.2 LED显示器1) LED的动态显示 本文中控制系统的显示器采用四位七段LED显示器7,其中前两位用于显示温度设定值,后两位用于显示温度测量值。另外,LED显示有动态显示和静态显示两种显示方式,其中静态显示方式的编程较容易,但占用口线资源较多。在本论文的设计中,四位七段LED显示器采用动态显示方式。段选线接8255的PA口,位选线接8255PB口的PB0PB3。由于各位的段选线并联,段选码的输出对各位来说都是相同的,在同一时刻,如果各

49、位的位选线都处于选通状态的话,四位LED将显示同样的字符;如果采用扫描显示方式,在某一时刻,只让某一位的位选线处于选通状态,其他各位处于关闭状态,同时在段选线上输出该位要显示的字符的字型码,这样在此时四位LED中只有选通的那一位显示出字符,而其他三位是熄灭的。同样在下一时刻只让下一位处于选通状态,其他的处于关闭状态,同时段选线输出该位要显示字符的字型码,在这一时刻只有选通的位有输出。如此循环下去,就可以使各位显示出要显示的字符,虽然这些字符不是同时出现,但由于人的视觉留现象,只要各位的显示间隔足够短,则会造成同时显示的假象。2) LED显示的驱动技术 LED显示器的驱动是一个重要的问题,驱动能

50、力不够,显示亮度就低,驱动器长期在超负荷下运行则容易损坏。对于静态显示,LED的驱动较为简单,只要驱动器的驱动能力与显示的工作电流相匹配即可,而且只须考虑段的驱动。动态显示则不然,由于一位数据的显示由段和位选信号共同完成的,必须同时考虑段和位的驱动,段的驱动能力决定了位的驱动能力:当段驱动能力确定后,要考虑极端的情况,即该位中各个段全部点亮,则位的驱动电流为各段驱动电流之和。选择晶体三极管C9013为驱动器,各个三极管工作于开关状态。当段、位选通时,C9013的饱和压降约为0.3V,LED的压降近似为1.5V,取限流电阻60,则段的峰值电流为:(50.31.50.5)/6050mA,因显示器为

51、四位LED显示,所以平均电流为50/412.5mA,显示器为七段,故位驱动电流为50×7=350mA,满足七段LED显示的要求。4.4.3 键盘工作原理简易键盘中的“UP”键、“DOWN”键和“AUTO”键跨接在8255相应的PC0PC2线上,此时,8255的PC口为输入。同时,3个按键的行线通过一个与门接到CUP的外部中断引脚上,当键盘上没有键闭合时,列线都输出高电平,引脚也为高电平。一旦键盘上有键闭合,引脚就变为低电平,向CUP发出中断请求。再用软件查询的方法判别是否真的有键按下和确定是哪个键被按下。另外,系统的软开关按键“ON/OFF”键接AT89C52的P1.3引脚,按键在没

52、有闭合时,P1.3引脚处于高电平,该按键采用扫描查询的工作方式,当检测到氏输入为低电平时,系统会在“正常运行模式”和“软关机模式”之间切换。4.5 串行存储及系统监控电路的设计4.5.1 监控芯片X25045功能介绍为提高单片机系统的稳定性和抗干扰能力,采用带看门狗定时器、带上电复位和电源电压监控的电路成为一种趋势。另外,在单片机系统中常常需要在线进行某些参数的设置和修改,且掉电后数据保持不变,往往会用到串行EERPOM。Xicor公司生产的X25045芯片将看门狗定时器、上电复位、电源电压监控和串行EEPROM集成在一片8只引脚的芯片内,与单片机的接口非常简单,简化了系统硬件,提高了可靠性,

53、降低了成本和功耗,是组成单片机系统的理想器件之一15。1) 功能简介看门狗X25045的看门狗定时器对单片机提供独立的保护系统。该定时器共有20Oms、600ms、1.4s三种定时时间,可由用户编程选择。在设定的时间内,若单片机没有访问X25045(即表示系统出现故障),看门狗将输出RESET信号,将其RESET输出端置为高电平。延时约200ms后,RESTE端由高电平变为低电平,将单片机复位。电压监控上电时,电源电压高于4.5V后,经过约200ms的稳定时间RESET信号由高电平变为低电平;掉电时,电源电压低于4.5V时,RESTE信号立即变为高电平直至电源电压恢复稳定为止。这样就保证了单片

54、机可靠复位以及电源电压不稳定时,单片机不会出现死机和误动作。X25045片内带64字节串行EEPROM,每个字节可擦写10万次以上,数据可保存100年以上,具有可编程块锁定功能,用三总线串行1/0接口便可进行读写操作2) 工作原理X25045内部有一个8位的指令寄存器,单片机通过对指令寄存器写命令实现对X25045的操作。指令、地址和数据均以高位在前的方式串行传送,EEPROM读(READ)、写(WRITE)命令中的第三位是EEPROM地址的高位A8,用于选择器件的上半部或下半部。另外,X25045有一个8位的状态寄存器,它由RDSR和WRSR命令进行读写WIP位为写EEPROM忙位,是只读位。WIP为“0”,表示没有进行EEPROM写操作,可以写EEPROM操作,WIP为“1”,表示正在进行EEPROM写操作,此时不能向EEPROM写数据。WIP位由WRNE指令设定为1:在执行WRDI操作,上电时,字节、页或状态寄存器写周期完成后,WIP脚变为低电平时,WPI复位为0。WEL是写使能寄存器状态位,是只读位。WEL由WREN指令置为1,由WRDI指令复位为0。当WEL

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论