版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 随机事件及其概率§1.1 随机事件及其运算随机现象:概率论的基本概念之一。是人们通常说的偶然现象。其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果.例如,投掷一枚五分硬币,可能“国徽”向上,也可能“伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一.指在科学研究或工程技术中,对随机现象在相同条件下的观察。对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。样本空间: 概率论
2、术语。我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为。样本空间的元素,即E的每一个结果,称为样本点。随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间包含所有的样本点,它是自身的子集,在每次试验中它总是发生的,称为必然事件.空集Ø不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件.互斥事件(互不相容事件): 若事件A与事件B不可能同时
3、发生,亦即 ,则称事件A与事件B是互斥(或互不相容)事件。互逆事件: 事件A与事件B满足条件,,则称A与B是互逆事件,也称A 与B是对立事件,记作(或)。互不相容完备事件组:若事件组满足条件,(), ,则称事件组为互不相容完备事件组(或称为样本空间的一个划分)。§1.2 随机事件的概率概率:随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。统计概率:在一定条件下,重复做n次试验,为n次试验中事件A发生的次数,如果随着n逐渐增大,频率逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概
4、率,记做P(A)=p。这个定义成为概率的统计定义。古典概型:若随机现象有下列两个特征 (1) 试验的可能结果(基本事件)只有有限个;(2)试验中每个可能结果(基本事件)出现的可能性相等.则称这类现象的数学模型为古典概型.古典概率:在古典概型中,如果基本事件的总数为n,事件所包含的基本事件个数为( ),则定义事件的概率 为 .即把可以作古典概型计算的概率称为古典概率。古典概率可直接按公式计算,而不必进行大量的重复试验。§1.3 概率的基本运算法则加法公式: 设为任意两个事件,则.当满足时,加法公式为。条件概率:在事件发生的条件下,事件发生的概率称为事件在事件已发生条件下的条件概率,记作
5、。当时,规定;当时,规定。乘法公式:设为任意两个事件,若,则。同理,若,事件的独立性:如果事件与满足,则称事件关于事件是独立的。独立性是相互的性质,即关于独立,一定关于独立,或称与相互独立。§1.4 全概率公式和贝叶斯公式全概率公式:设事件组是样本空间的一个划分,且,则对任意的事件,有此公式称为全概率公式。贝叶斯公式:设事件组是样本空间的一个划分,对任意的事件,且,则 , 此公式称为贝叶斯公式。第二章 随机变量及其分布§2.1 随机变量随机变量:设E是一随机试验,它的样本空间为 ,如果对于内的每一个e,变量都有一个确定的实数值与之对应,则变量是样本点e的实函数,记作。这样的
6、变量称为随机变量。随机变量的分布:要全面了解一个随机变量,不但要知道它取哪些值,而且要知道它取这些值的统计规律,随机变量取值的统计规律就称为它的概率分布,简称分布。分布函数:设是一随机变量,是任意实数,由 确定的函数称为随机变量的分布函数。如果将看成是数轴上的随机点的坐标,那么,分布函数F(x)在处的函数值就表示落在区间上的概率。对于任意实数,因此分布函数完整地描述了随机变量的统计规律性。离散型随机变量:如果随机变量的可能取值只有限个或可列个,则称它为离散型随机变量。若的可能取值为,相应的概率称为离散型随机变量的概率函数或分布律。Bernoulli试验:只有两个可能结果的随机试验称Bernou
7、lli试验。试验的独立性:若是试验E1的可能结果与E2的可能结果的发生与否是独立的,则称试验E1与E2是相互独立的。n重Bernoulli试验:把Bernoulli试验重复独立进行n次,称为n重Bernoulli试验。n重Bernoulli试验是一种非常重要的的概率模型,它是“在相同条件下进行重复试验或观察”的一种数学模型.二项分布:若将Bernoulli试验中的一个可能结果记为且,n重Bernoulli试验中出现的次数记为,则随机变量的概率函数为 ,的分布称为服从参数为的二项分布,记作.当时,的概率函数为,,则称服从参数为的两点分布(或0-1分布).泊松分布:若随机变量的概率函数为 则称服从
8、参数为的分布,记作。连续型随机变量:设随机变量所有可能取值充满一个区间,如果相应于它的分布函数存在非负函数,对于任意的实数都有则称为连续型随机变量,称为的概率密度函数. 有如下性质: (1), (2)均匀分布: 如果随机变量的概率密度函数为 则称在区间上服从均匀分布,记为.指数分布: 如果随机变量的概率密度函数为其中为常数则称服从参数为的指数分布, 记为.正态分布: 如果随机变量的概率密度函数为 ,其中为常数,则称服从参数为的正态分布,记为.当时,称服从标准正态分布,记为.随机向量: 如果是是联系于同一样本空间中的两个随机变量,则称为二维随机变量或二维随机向量。对任意两个实数,二元函数称为的联
9、合分布函数。或称为或的边缘分布函数。常用的随机变量函数的分布:(1)-分布 设独立随机变量均服从标准正态分布N(0,1),则随机变量的分布称为服从是自由度为n的分布,记作,其分布密度函数为 (2)-分布 设,且与相互独立,则随机变量所服从的分布称为自由度为的分布,记作,其分布密度函数为,。(3)-分布 设,且与相互独立,则随机变量所服从的分布称为自由度为的分布,记作,其分布密度函数为。第三章 随机变量的数字特征数学期望:随机变量按概率的加权平均,表征其概率分布的中心位置,它反映随机变量平均取值的大小,它是简单算术平均的一种推广。是随机变量最基本的数学特征之一,又称期望或均值。离散型随机变量的数
10、学期望:设为一离散型堕机变量,其分布列为,,若级数绝对收敛,则称这级数为的数学期望,记为,即,否则,称的数学期望不存在.连续型随机变量的数学期望:设为一连续型随机变量,其密度函数是,若收敛,则称 为的数学期望,否则称的数学期望不存在.方差、标准差: 设为一随机变量,若存在,则称为的方差,记为,即 ;称为的标准差。方差描述了随机变量的可能取值关于均值的分散程度。若离散型随机变量的概率函数为,则;若连续型随机变量的概率密度函数为,则。变异系数:设为任一随机变量,若存在,且,则称为的变异系数。协方差、相关系数:设为二维随机向量,若存在,则称为与协方差,记作;称为与相关系数,记作。协方差、相关系数都是
11、描述两个随机变量之间线性关联程度的数字特征。当时,称与不相关。矩:设为随机变量,若存在,则称为的k阶原点矩;若存在,则称为的k阶中心矩.;的数学期望是的一阶原点矩,即;的方差是的二阶中心矩,即。大数定律:概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一。大数定律有若干表现形式。贝努里大数定律:设是重贝努里试验中事件出现的次数,是事件在每次试验中出现的概率,则对任意的,有。定理表明事件发生的频率依概率收敛于事件的概率。定理以严格的数学形式表达了频率的稳定性。就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小中心极限定理:是概率论中最著名的结果之一。
12、它指出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。中心极限定理也有若干个表现形式。德莫佛拉普拉斯中心极限定理: 设是重贝努里试验中事件出现的次数,是事件在每次试验中发生的概率,则当n无限大时,频率趋于服从参数为,的正态分布。即:对任意的,有。该定理是中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 第四章 随机抽样及
13、抽样分布总体、个体:统计学中,把研究对象的全体称为总体,其中的每个成员称为个体。统计方法就是通过对部分个体的观察来推断总体的规律性。抽样、样本:为了推断总体分布及其各种特征,就必须从总体中,按一定的法则抽取若干个体进行观测或试验,以获得有关总体的信息。这一抽取过程称为抽样,所抽取的部分个体称为样本。简单随机抽样及简单随机样本:如果一种抽样方法满足下面两点:(1)代表性. 总体中每一个体都有同等机会被抽入样本,这意味着样本中每个个体与所考察的总体具有相同的分布,因此,任一样本中的个体都具有代表性。(2)独立性. 样本中每个个体取什么值并不影响其它个体取什么值。这意味着,样本中各个体是相互独立的随
14、机变量;则称它为简单随机抽样。由简单随机抽样所得的样本称为简单随机样本。统计量:设为来自总体X的一个样本,为一个连续函数,果中不包含未知参数,则称为一个统计量。统计量是一随机变量,它的分布称为抽样分布。样本均数、样本方差:统计量 和 称为样本均数与样本方差。单个正态总体的抽样分布:设为来自正态总体的一个样本,则(1) ,(2) (3) 两个正态总体的抽样分布:设和分别为来自正态总体和的样本,则有 (1), ,其中, (2) 。第五章 抽样估计参数估计:参数估计就是要从样本出发去构造一个统计量作为总体中某未知参数的一个估计量;包括点估计和区间估计两种。点估计:设为总体的样本,为总体的一个未知参数
15、,构造统计量,对于样本观测值,将统计量的的观测值作为参数的估计,则称为的估计值,称统计量为的估计量;的估计量和估计值统称为的估计,记作,这种对未知参数作进行定值估计,称为参数的点估计.矩估计:当样本容量n较大时,可以用样本各阶矩去估计总体的各阶矩。按这种统计思想获得未知参数的估计量的方法称为矩估计。极大似然估计:概率较大的事件在一次试验中出现的可能性较大。如果随机抽样(随机试验)的结果得到样本观察值,则我们应当这样选取的值,使这组样本值出现的可能性最大。也就是使似然函数达到最大值,从而求出参数的估计值,此方法得到的参数估计称为极大似然估计。区间估计:要求由样本构造一个以较大的概率包含真实参数的
16、一个范围或区间,这种带有概率的区间称为置信区间,通过构造一个置信区间对未知参数进行估计的方法称为区间估计。置信区间、置信度:设为总体的样本,为总体的一个未知参数,对于预先给定的值,构造统计量和,使之满足 ,则称随机区间为的或置信区间;其中和分别称为置信下限和置信上限,称为置信度.单侧置信区间:由 或 确定的区间或称为总体未知参数的置信度为的单侧置信区间;,分别称为单侧置信下限和单侧置信上限。第六章 假设检验假设检验:是统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:首先根据问题的需要对所研究的总体作某种假设,接着建立推断统计假设的方法,以判断所作假设是否正确。在统计学上,称判断假
17、设正确与否的方法为统计假设检验,简称假设检验。统计假设:把任何一个关于总体分布的假设,称为统计假设。仅涉及到总体分布中所包含的几个未知参数的统计假设称为参数假设;否则称为非参数假设。小概率原理:在概率论中我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件.一般多采用0.01,0.05两个值即事件发生的概率在001以下或0.05以下的事件称为小概率事件,这两个值称为小概率标准,小概率事件可以认为在一次试验中一般不会发生。实际问题中,如果小概率事件发生了,我们认为这是不合理的现象。检验统计量:建立推断统计假设的方法时所用到的统计量称为检验统计量。两类错误:任何一个假设检
18、验都有可能犯两类错误中的一类,I类错误是弃真错误,即否定了未知的真实情况,把真当成了假;II类错误是纳伪错误,即接受了未知的不真实状态,把假的当作真的接受了。I类错误和II类错误是一对矛盾。降低了I类错误的概率时,犯II类错误的概率就会提高。要同时达到减少犯两类错误的可能性,唯有通过扩大样本容量来实现。显著性水平:只控制犯第类错误概率的检验称为显著性检验,称为显著性水平,参数检验:统计假设仅为参数假设的统计检验方法称为参数检验。参数检验法是依赖于总体分布性质的。非参数检验:是对总体分布不作任何限制性假设统计检验方法。由于它无须对总体分布作任何限制性假设特点,因此也称之为自由分布检验或无分布检验
19、。与参数检验方法比较,非参数检验方法具有容易理解,计算相对简单的特点第七章 方差分析方差分析:比较多个相互独立、具有方差齐性的正态总体的均数是否相等的一种统计检验法。因素:是指在试验中或在抽样时发生变化的条件。通常用A、B、C、表示。方差分析的目的就是分析因素对试验或抽样的结果有无显著影响。如果在试验中变化的因素只有一个,试验称为单因素试验;在试验中变化的因素不只一个时,就称多因素试验。双因素试验是多因素试验的最简单情形。水平:因素在试验中的不同状态称作水平。如果因素A有r个不同状态,就称它有r个水平,可用表示。我们针对因素的不同水平或水平的组合,进行试验或抽取样本,以便了解因素对试验结果的影
20、响。单因素方差分析:针对单因素试验的方差分析称为单因素方差分析。双因素方差分析:针对双因素试验的方差分析称为双因素方差分析。第八章 正交试验设计与分析试验设计:是统计学的一个重要分支,它的主要内容是讨论如何合理地安排试验、有效获得数据资料的方法以及试验后的数据怎样作统计分析。试验设计的周密而完善,就能以较少的的人力、物力和时间,获得丰富而可靠的资料,从而通过统计分析,得出较为可靠的结论。试验设计与数据分析是互相匹配的,在设计试验时就应明确日后如何分析结果;任何数据分析方法均要求特定的数据结构和特定的试验模式。正交试验设计:是利用规格化的表格正交表安排多因素试验、分析试验结果的一种科学设计方法。
21、它从多因素的全部水平组合中挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析了解全面试验的情况,找出因素最佳水平组合。正交表:正交表是一种特殊的表格,其中常用的一类记作,其中表示正交表;下标表示正交表的行数,也是试验次数;表示正交表的列数;表示各因素的水平数。交互作用:在多因素试验中,不仅存在各个因素的单独作用,也可能存在因素之间的联合作用,既有相互促进或相互制约的情况。两个或多个因素之间联合所起的作用,称为因素之间的交互作用。第九章 相关与回归分析相关关系:一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。即变量与之间有一定的联
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国戒烟产品市场竞争策略及未来发展潜力分析报告版
- 2024-2030年中国建筑劳务行业竞争战略及发展规划分析报告版
- 2024-2030年中国干细胞美容产业资本运作模式及投资战略分析报告
- 2024-2030年中国尼龙材料行业现状分析及未来发展时机研究报告
- 2024-2030年中国家禽饲养行业发展前景预测和投融资分析报告
- 2024至2030年手提式CO2灭火器项目投资价值分析报告
- 2024至2030年古陶手工砖项目投资价值分析报告
- 2024至2030年8口10M以太网集线器项目投资价值分析报告
- 2024至2030年PVC滴塑胶章项目投资价值分析报告
- 2024餐饮业大宗食材供应协议
- 钢丝绳的安全载重表
- 高中数学函数评课稿
- 购并技巧与案例解析
- 当代西方国家议会制度
- structure-.---中文使用手册
- 小学三年级缩句、扩句复习及教案(课堂PPT)
- 斯派克直读光谱仪操作手册(共43页)
- 梯形练字格A4纸打印版
- 2014年SHE教育培训计划
- 二年级上册叶一舵心理健康教案
- 机场使用手册飞行区场地管理
评论
0/150
提交评论