第一讲交叉点的计算_第1页
第一讲交叉点的计算_第2页
第一讲交叉点的计算_第3页
第一讲交叉点的计算_第4页
第一讲交叉点的计算_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、H T VHtot(r,R) TNTeVeeVeNVNN12M212mei2i1rijjiiZriiZZRTN He(r;R)Nuc-nuc repulsionel-nuc attractionel-el repulsionNuc kinetic EnElectr. kinetic En(TN EIe)I ETIT(r,R) I(R)Ie(r;R)HT TN He12M2 He(r;R)HeIe EIeIeHTT ETT are facilitated by the close proximity of potential energy surfaces. When the potential

2、 energy surfaces approach each other the BO approximation breaks down. The rate for nonadiabatic transitions depends on the energy gap.T(r ,R ) I(R ) Ie(r ;R )I 1NaHeIe EIeIe(TN1KII EIe)I12(2fIJJ KIJJINJ) ETIfIJ(R) IeJerkIJ(R) Ie2JerWhen electronic states approach each other, more than one of them s

3、hould be included in the expansionfIJ I JIH JEJ EIfIJ fJIfII 0I2J fIJ fIJfIJTwo adiabatic potential energy surfaces cross. The interstate coupling is large facilitating fast radiationless transitions between the surfaces1 c111 c2122 c121 c222HeH11H12H21H22HijiHejH H11 H221 cos21 sin222 sin21 cos22si

4、n2H12H2H122cos2H11 H22H2H122iE1,2H11 H22H2 H1222H11(R)=H22 (R)H12 (R) =0Since two conditions are needed for the existence of a conical intersection the dimensionality is Nint-2, where Nint is the number of internal coordinates For diatomic molecules there is only one internal coordinate and so state

5、s of the same symmetry cannot cross (noncrossing rule). But polyatomic molecules have more internal coordinates and states of the same symmetry can cross.J. von Neumann and E. Wigner, Phys.Z 30,467 (1929)HeH11H12H21H22QyQxQsRrNint-2 coordinates form the seam: points of conicalintersections are conne

6、cted continuouslyhgETwo internal coordinates lift the degeneracy linearly:g-h or branching plane Figure 1b2.933.13.23.33.4r (a.u.)-0.6-0.4-0.200.20.40.6x (a.u.)-3-2-10123E (eV)Figure 4a -0.2-0.100.10.2x (bohr)-0.2-0.100.10.2y (bohr)-0.015-0.01-0.00500.0050.010.015energy (a.u.)H(R) H(R0) H(R0)RH(R) 0

7、 H(R0)RH12(R) 0 H12(R0)RH(R0)R 0H12(R0)R 0g Hh H12He (sxx syy)IgxhyhygxE1,2 sxx syy (gx)2 (hy)2Conical intersections are described in terms of the characteristic parameters g,h,sasymmetrytiltE E0sxx syyg2x2h2y21 cos21 sin222 sin21 cos221( 2) 1()2( 2) 2()TeiA(R)(R;r)(R)gIJ(R)= gI(R) - gJ(R)hIJ(R) cI(

8、Rx)H(R)RcJ(Rx)gI(R) cI(Rx)H(R)RcI(Rx)IecmImm1NCSFHe(R) EI(R)cI(R) 0Locate conical intersections using lagrange multipliers:Eij gjiR 0hjiR 0Additional geometrical constrains, Ki, , can be imposed. These conditions can be imposed by finding an extremum of the Lagrangian. L (R, , )= Ek + 1Eij+ 2Hij + i

9、Ki-2-10123456-4-3-2-101234Y(a0)X(a0)-2-10123456-4-3-2-101234Y(a0)X(a0)hgEFigure 4a -0.2-0.100.10.2x (bohr)-0.2-0.100.10.2y (bohr)-0.015-0.01-0.00500.0050.010.015energy (a.u.)Reaction to H2O+OQuenching to OH(X)+OH(X)OH(A)+OH(X)Three-state conical intersectionsH11(R)=H22 (R)= H33H12 (R) = H13 (R) = H23 (R) =0 Nint-5, where Nint is the number of internal coordinates J. von Neumann and E. Wigner, Phys.Z 30,467 (1929)H H11H12H13H12H22H23H13H23H33H11H120H1T2H12*H22H1T20H11H12*H12H22C.A.Mead J.Chem.Phys., 70, 2276, (1979)1 2 T1 T2 kqEEX)(12111XXkT #p cas(6,6,slaterdet)/6-31G* opt=conical opt

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论