超精密机械加工方法与类型(车铣钻磨等)探讨_第1页
超精密机械加工方法与类型(车铣钻磨等)探讨_第2页
超精密机械加工方法与类型(车铣钻磨等)探讨_第3页
超精密机械加工方法与类型(车铣钻磨等)探讨_第4页
超精密机械加工方法与类型(车铣钻磨等)探讨_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、超精密机械加工方法与类型 (车铣钻磨等)探讨班级:拓展3班姓名:王建鹏学号:201224370326指导老师:郭洋超精密机械加工方法与类型(车铣钻磨等)探讨摘要:20世纪60年代为了适应核能、大规模集成电路、激光和航天等尖端技术的需要而发展起来的精度极高的一种加工技术。到80年代初,其最高加工尺寸精度已可达10纳米(1纳米=0.001微米)级,表面粗糙度达1纳米,加工的最小尺寸达 1微米,正在向纳米级加工尺寸精度的目标前进。纳米级的超精密加工也称为纳米工艺(nano-technology) 。超精密加工是处于发展中的跨学科综合技术。超精加工的分类有去除加工、结合加工、变形加工。1 超精密机械加

2、工技术概述传统的机械加工方法(普通加工)与精密和超精密加工方法一样。随着新技术、新工艺、新设备以及新的测试技术和仪器的采用,其加工精度都在不断地提高。加工精度的不断提高,反映了加工工件时材料的分割水平不断由宏观进人微观世界的发展趋势。随着时间的进展,原来认为是难以达到的加工精度会变得相对容易。因此,普通加工、精密加工和超精密加工只是一个相对概念?其间的界限随着时间的推移不断变化。精密切削与超精密加工的典型代表是金刚石切削。以金刚石切削为例。其刀刃口圆弧半径一直在向更小的方向发展。因为它的大小直接影响到被加工表面的粗糙度,与光学镜面的反射率直接有关,对仪器设备的反射率要求越来越高。如激光陀螺反射

3、镜的反射率已提出要达到99.99%,这就必然要求金刚石刀具更加锋利。为了进行切极薄试验,目标是达到切屑厚度nm,其刀具刃口圆弧半径应趋近2.4nm。为了达到这个高度,促使金刚石研磨机改变了传统的结构。其中主轴轴承采用了空气轴承作为支承,研磨盘的端面跳动可在机床上自行修正,使其端面跳动控制在0.5m以下。刀具方面,采用金刚石砂轮,控制背吃刀量和进给量,在超精密磨床上,可以进行延性方式磨削,即纳米磨削。即使是玻璃的表面也可以获得光学镜面。2精密加工和超精密加工的发展趋势从长远发展的观点来看,制造技术是当前世界各国发展国民经济的主攻方向和战略决策,是一个国家经济发展的重要手段之一,同时又是一个国家独

4、立自主、繁荣昌盛、经济上持续稳定发展、科技上保持领先的长远大计。科技的发展对精密加工和超精密加工技术也提出了更高的要求。从大到天体望远镜的透镜,小到大规模集成电路线宽m要求的微细工程和微机械的微纳米尺寸零件,不论体积大小,其最高尺寸精度都趋近于纳米;零件形状也日益复杂化,各种非球面已是当前非常典型的几何形状。微机械技术为超精密制造技术引来一种崭新的态势?它的微细程度使传统的制造技术面临一种新的挑战,促进了各种产品技术性能的提高,发展过程呈现出螺旋式循环发展,直接对科学技术的进步和人类文明作出贡献。对产品高质量、小型化、高可靠性和高性能的追求,使超精密加工技术得以迅速发展,现已成为现代制造工业的

5、重要组成部分。2超精密机械加工类型一、概述a刨床系指用刨刀加工工件表面的机床。刀具与工件做相对直线运动进行加工,主要用于各种平面与沟槽加工,也可用于直线成形面的加工。按其结构可分为以下类型:(1)悬臂刨床:具有单立柱和悬臂的刨床,工作台沿床身导轨作纵向往复运动,垂直刀架可沿悬臂导轨横向移动、侧刀架沿立柱导轨垂向移动。(2)龙门刨床:具有双立柱和横梁,工作台沿床身导轨作纵向往复运动,立柱和横梁分别装有可移动侧刀架和垂直刀架的刨床。(3)牛头刨床:刨刀安装在滑枕的刀架上作纵向往复运动的刨床。通常工作台作横向或垂向间歇进给运动。(4)插床(立刨床):该类机床刀具在垂直面内作往复运动,工作台做进给运动

6、。b磨床系指用磨具或磨料加工工件各种表面的机床。一般用于对零件淬硬表面做磨削加工。通常,磨具旋转为主运动,工件或磨具的移动为进给运动,其应用广泛、加工精度高、表面粗糙度Ra值小,磨床可分为十余种:(1)外圆磨床:是普通型的基型系列,主要用于磨削圆柱形和圆锥形外表面的磨床。(2)内圆磨床:是普通型的基型系列,主要用于磨削圆柱形和圆锥形内表面的磨床。(3)座标磨床:具有精密座标定位装置的内圆磨床。(4)无心磨床:工件采用无心夹持,一般支承在导轮和托架之间,由导轮驱动工件旋转,主要用于磨削圆柱形表面的磨床。(5)平面磨床:主要用于磨削工件平面的磨床。(6)砂带磨床:用快速运动的砂带进行磨削的磨床。(

7、7)珩磨机:用于珩磨工件各种表面的磨床。(8)研磨机:用于研磨工件平面或圆柱形内,外表面的磨床。(9)导轨磨床:主要用于磨削机床导轨面的磨床。(10)工具磨床:用于磨削工具的磨床。(11)多用磨床:用于磨削圆柱、圆锥形内、外表面或平面,并能用随动装置及附件磨削多种工件的磨床。(12)专用磨床:从事对某类零件进行磨削的专用机床。按其加工对象又可分为:花键轴磨床、曲轴磨床、凸轮磨床、齿轮磨床、螺纹磨床、曲线磨床等。c钻床系指主要用钻头在工件上加工孔的机床。通常钻头旋转为主运动,钻头轴向移动为进给运动。钻床结构简单,加工精度相对较低,可钻通孔、盲孔,更换特殊刀具,可扩、锪孔,铰孔或进行攻丝等加工。钻

8、床可分为下列类型:(1)台式钻床:可安放在作业台上,主轴垂直布置的小型钻床。(2)立式钻床:主轴箱和工作台安置在立柱上,主轴垂直布置的钻床。(3)摇臂钻床:摇臂可绕立柱回转、升降,通常主轴箱可在摇臂上作水平移动的钻床。它适用于大件和不同方位孔的加工。(4)铣钻床:工作台可纵横向移动,钻轴垂直布置,能进行铣削的钻床。(5)深孔钻床:使用特制深孔钻头,工件旋转,钻削深孔的钻床。(6)平端面中心孔钻床:切削轴类端面和用中心钻加工的中心孔钻床。(7)卧式钻床:主轴水平布置,主轴箱可垂直移动的钻床。d镗床系指主要用镗刀在工件上加工已有预制孔的机床。通常,镗刀旋转为主运动,镗刀或工件的移动为进给运动。它主

9、要用于加工高精度孔或一次定位完成多个孔的精加工,此外还可以从事与孔精加工有关的其他加工面的加工。二、 按结构和被加工对象分(1)卧式镗床:镗轴水平布置并做轴向进给,主轴箱沿前立柱导轨垂直移动,工作台做纵向或横向移动,进行镗削加工。这种机床应用广泛且比较经济,它主要用于箱体(或支架)类零件的孔加工及其与孔有关的其他加工面加工。(2)坐标镗床:具有精密坐标定位装置的镗床,它主要用于镗削尺寸、形状、特别是位置精度要求较高的孔系,也可用于精密坐标测量、样板划线、刻度等工作。(3)精镗床:用金刚石或硬质合金等刀具,进行精密镗孔的镗床。(4)深孔镗床:用于镗削深孔的镗床。(5)落地镗床:工件安置在落地工作

10、台上,立柱沿床身纵向或横向运动。用于加工大型工件。此外还有能进行铣削的铣镗床,或进行钻削的深孔钻镗床。3、超精密加工的发展经历了如下三个阶段。(1)20世纪50年代至80年代为技术开创期。20世纪50年代末,出于航天、国防等尖端技术发展的需要,美国率先发展了超精密加工技术,开发了金刚石刀具超精密切削-单点金刚石切削(Single point diamond tuming,SPDT)技术,又称为"微英寸技术",用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。从1966年起,美国的unionCarbide公司、荷兰Philips公司和美国LawrenceL

11、ivemoreLaboratories陆续推出各自的超精密金刚石车床,但其应用限于少数大公司与研究单位的试验研究,并以国防用途或科学研究用途的产品加工为主。这一时期,金刚石车床主要用于铜、铝等软金属的加工,也可以加工形状较复杂的工件,但只限于轴对称形状的工件例如非球面镜等。(2)20世纪80年代至90年代为民间工业应用初期。在20世纪80年代,美国政府推动数家民间公司Moore Special Tool和Pneumo Precision公司开始超精密加工设备的商品化,而日本数家公司如Toshiba和Hitachi与欧洲的Cmfield大学等也陆续推出产品,这些设备开始面向一般民间工业光学组件商

12、品的制造。但此时的超精密加工设备依然高贵而稀少,主要以专用机的形式订作。在这一时期,除了加工软质金属的金刚石车床外,可加工硬质金属和硬脆性材料的超精密金刚石磨削也被开发出来。该技术特点是使用高刚性机构,以极小切深对脆性材料进行延性研磨,可使硬质金属和脆性材料获得纳米级表面粗糙度。当然,其加工效率和机构的复杂性无法和金刚石车床相比。20世纪80年代后期,美国通过能源部"激光核聚变项目"和陆、海、空三军"先进制造技术开发计划"对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。美国LLNL国家实验室研制出的大型光学金

13、刚石车床(Large optics diamond turning machine,LODTM)成为超精密加工史上的经典之作。这是一台最大加工直径为1.625m的立式车床,定位精度可达28nm,借助在线误差补偿能力,可实现长度超过1m、而直线度误差只有士25nm的加工。(3)20世纪90年代至今为民间工业应用成熟期。从1990年起,由于汽车、能源、医疗器材、信息、光电和通信等产业的蓬勃发展,超精密加工机的需求急剧增加,在工业界的应用包括非球面光学镜片、Fresnel镜片、超精密模具、磁盘驱动器磁头、磁盘基板加工、半导体晶片切割等。在这一时期,超精密加工设备的相关技术,例如控制器、激光干涉仪、空

14、气轴承精密主轴、空气轴承导轨、油压轴承导轨、摩擦驱动进给轴也逐渐成熟,超精密加工设备变为工业界常见的生产机器设备,许多公司,甚至是小公司也纷纷推出量产型设备。此外,设备精度也逐渐接近纳米级水平,加工行程变得更大,加工应用也逐渐增广,除了金刚石车床和超精密研磨外,超精密五轴铣削和飞切技术也被开发出来,并且可以加工非轴对称非球面的光学镜片。4、世界发展状况世界上的超精密加工强国以欧美和日本为先,但两者的研究重点并不一样。欧美出于对能源或空间开发的重视,特别是美国,几十年来不断投入巨额经费,对大型紫外线、x射线探测望远镜的大口径反射镜的加工进行研究。如美国太空署(NASA)推动的太空开发计划,以制作

15、1m以上反射镜为目标,目的是探测x射线等短波(O.130nm)。由于X射线能量密度高,必须使反射镜表面粗糙度达到埃级来提高反射率。此类反射镜的材料为质量轻且热传导性良好的碳化硅,但碳化硅硬度很高,须使用超精密研磨加工等方法。日本对超精密加工技术的研究相对美、英来说起步较晚,却是当今世界上超精密加工技术发展最快的国家。日本超精密加工的应用对象大部分是民用产品,包括办公自动化设备、视像设备、精密测量仪器、医疗器械和人造器官等。日本在声、光、图像、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,具有优势,甚至超过了美国。日本超精密加 我国精密和超精密加工发展策略我国精密和超精密加工经过数

16、十年的努力,日趋成熟。不论是精密机床、金刚石工具,还是精密加工工艺已形成了一整套完整的精密制造技术系统,为推动机械制造向更高层次发展奠定了基础。正在向纳米级精度或毫微米精度迈进,其前景十分令人鼓舞。随着科学技术的飞速发展和市场竞争日益激烈?越来越多的制造业开始将大量的人力、财力和物力投入先进的制造技术和先进的制造模式的研究和实施策略之中。5、总结尽管随时代的变化,超精密加工技术不断更新,加工精度不断提高,各国之间的研究侧重点有所不同,但促进超精密加工发展的因素在本质上是相同的。这些因素可归结如下。(1)对产品高质量的追求。为使磁片存储密度更高或镜片光学性能更好,就必须获得粗糙度更低的表面。为使

17、电子元件的功能正常发挥,就要求加工后的表面不能残留加工变质层。按美国微电子技术协会(SIA)提出的技术要求,下一代计算机硬盘的磁头要求表面粗糙度Ra0.2nm,磁盘要求表面划痕深度hlnm,表面粗糙度Ra0.1nmp。1983年TANIGUCHI对各时期的加工精度进行了总结并对其发展趋势进行了预测,以此为基础,BYRNE描绘了20世纪40年代后加工精度的发展。(2)对产品小型化的追求。伴随着加工精度提高的是工程零部件尺寸的减小。从19892001年,从6.2kg降低到1.8kg。电子电路高集成化要求降低硅晶片表面粗糙度、提高电路曝光用镜片的精度、半导体制造设备的运动精度。零部件的小型化意味着表面积与体积的比值不断增加,工件的表面质量及其完整性越来越重要。(3)对产品高可靠性的追求。对轴承

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论