(完整版)自动控制原理试题答案_第1页
(完整版)自动控制原理试题答案_第2页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、zidpngkongzhi1闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用。2典型闭环系统的功能框图。自动控制在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。自动控制系统由控制器和被控对象组成,能够实现自动控制任务的系统。被控制量在控制系统中按规定的任务需要加以控制的物理量。控制量作为被控制量的控制指令而加给系统的输入星也称控制输入。扰动量干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。反馈通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。反送到输入端的信号称为反馈信号。负反馈反馈

2、信号与输人信号相减,其差为偏差信号。负反馈控制原理检测偏差用以消除偏差。将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。开环控制系统系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。开环控制又分为无扰动补偿和有扰动补偿两种。闭环控制系统凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。自动控制原理课程中所讨论的主要是闭环负反馈控制系统。复合控制系统复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。它在闭环控制的基础上,用开环方式

3、提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。自动控制系统组成闭环负反馈控制系统的典型结构如图12所示。组成一个自动控制系统通常包括以下基本元件.给定元件给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。给定元件通常不在闭环回路中。2.测量元件测量元件也叫传感器,用于测量被控制量,产生与被控制量有一定函数关系的信号。被控制量成比例或与其导数成比例的信号。测量元件的精度直接影响控制系统的精度应使测量元件的精度高于系统的精度,还要有足够宽的频带。3比较无件用于比较控制量和反馈量并产生偏差信号。电桥、运算放大器可作为电信号的比较

4、元件。有些比较元件与测量元件是结合在一起的,如测角位移的旋转变压器和自整角机等。4放大元件对信号进行幅值或功率的放大,以及信号形式的变换如交流变直流的相敏整流或直流变交流的相敏调制。5执行元件用于操纵被控对象,如机械位移系统中的电动机、液压伺服马达、温度控制系统中的加热装置。执行元件的选择应具有足够大的功率和足够宽的频带。6校正元件用于改善系统的动态和稳态性能。根据被控对象特点和性能指标的要求而设计。校正元件串联在由偏差信号到被控制信号间的前向通道中的称为串联校正;校正元件在反馈回路中的称为反馈校正。7被控对象控制系统所要控制的对象,例如水箱水位控制系统中的水箱、房间温度控制系统中的房间、火炮

5、随动系统中的火炮、电动机转速控制系统中电机所带的负载等。设计控制系统时,认为被控对象是不可改变的,它的输出即为控制系统的被控制量。8能源元件为控制系统提供能源的元件,在方框图中通常不画出。对控制系统的基本要求1稳定性稳定性是系统正常工作的必要条件。2准确性要求过渡过程结束后,系统的稳态精度比较高,稳态误差比较小或者对某种典型输入信号的稳态误差为零。3快速性系统的响应速度快、过渡过程时间短、超调量小。系统的稳定性足够好、频带足够宽,才可能实现快速性的要求。第一章:1、建立系统的微分方程,绘制动态框图并求传递函数。3、传递函数在零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比称为传递函数。

6、传递函数的概念适用于线性定常单输入、单输出系统。求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。4、结构图的变换与化简化简方框图是求传递函数的常用方法。对方框图进行变换和化简时要遵循等效原则:对任一环节进行变换时,变换前后该环节的输人量、输出量及其相互关系应保持不变。化简方框图的主要方法就是将串联环节、并联环节和基本反馈环节用一个等效环节代替。化简方框图的关键是解除交叉结构,即移动分支点或相加点,使被简化的环节中不存在与外部直接相连的分支点和相加点。5、h(s)=丄XQ(s)A(s)利用梅

7、森(Mason)公式求传递函数。Ai1Q.(s)第i条前向通路传递函数的乘积。A流图的特征式=1-所有回路传递函数乘积之和+每两个互不接触回路传递函数乘i积之和-每三个.=1-工L+EELL-A.余子式,从A中处除去与第i条前向通路接触的回路abciabc第三章:1、一阶系统对典型输入信号的输出响应。(单位)阶跃函数(Stepfunction)1(t),t>0;(单位)斜坡函数(Rampfunction)速度t,t>0;(单位)加速度函数(Accelerationfunction)抛物线一t2,t>0;(单位)脉冲函数(Impulsefunction)2S(t),t=0;正弦

8、函数(Simusoidalfunction)Asinut,当输入作用具有周期性变化时。图3-2表示性能指标td,tr,tp,Mi和ts的单位阶跃响应曲线2、动态性能指标:1.延迟时间:(DelayTime)响应曲线第一次达到稳态值的一半所需的时间,叫延迟时间。2. 上升时间t:(RiseTime)响应曲线从稳态值的10%上升到90%,r所需的时间。5%上升到95%,或从0上升到100%,对于欠阻尼二阶系统,通常采用0100%的上升时间,对于过阻尼系统,通常采用1090%的上升时间上升时间越短,响应速度越快。3. 峰值时间t(PeakTime):响应曲线达到过调量的第一个峰值所p需要的时间。4.

9、 调节时间t:(SettlingTime):在响应曲线的稳态线上,用稳态值的百分数(通常取5%或2%)作一个允许误差范围,响应曲线达到并永远保持在这一允许误差范围内,所需的时间。5. 最大超调量M:(MaximumOvershoot):指响应的最大偏离量h(tp)于终值h(w)之差的百分比,即b%pb%=h(tp)-g)%100%hS)3-1t或t评价系统的响应速度;t同时反映响应速度和阻尼程度的综合性指标。b%评rps价系统的阻尼程度。3、一阶系统的时域分析单位阶跃响应单位阶跃函数的拉氏变换为R(s)二|,则系统的输出由式为C(s)=0(s)R(s)二TS1-1二-1-S1-STS十1SST

10、S十1为所对上式取拉氏反变换,得c(t)二1-e-tt>0(3-4)注:R(s)的极点形成系统响应的稳态分量。1响应曲线在t>0时的斜率为t,如果系统输出响应的速度恒1T,则只要t=T时,输出c(t)就能达到其终值。如图3-4示。由于c(t)的终值为1,因而系统阶跃输入时的稳态误差为零。动态性能指标:t二0.69Tt=2.20Tt=3T(5%误差带)t和b%不存在drsp4、二阶系统时间响应及其动态性能指标计算。典型传递函数°(s)=s2-2gws-w2nn二阶系统的单位阶跃响应0两个正实部的特征根不稳定系统0<1闭环极点为共扼复根,位于右半S平面,这时的系统叫做欠

11、阻尼系统7=1为两个相等的根,临界阻尼系统1两个不相等的根,过阻尼系统7=0虚轴上,瞬态响应变为等幅振荡,无阻尼系统欠阻尼情况二阶系统一般取7=0.40.8,0.7。其它的动态性能指标,有的可用7和精确表示,如t,t,M,有的nrpp很难用E和准确表示,如t,t,可采用近似算法。当0<1时,特征根0=arcta八1-g2,wgdndsS2_gw土jwJl-g2,nntt1+。仗+0.2g2o<g<idt厂-01z中1+0.7g(1)d-时,亦可用t二nd-n(2)t(上升时间)r兀一Btrdg一定,即0定,T-Tttl,响应速度越快nrt(峰值时间)p冗tp-dg一定时,-T

12、(闭环极点力负实轴的距离越远)Ttlnpb%orM的计算,超调量p超调量在峰值时间发生,故叫)即为最大输出b%h(tp)-h®)%100%=eh(s)1-g2x100%调节时间ts的计算选取误差带A=0.05A=0.02<3.5_gn3.5gn当g较小g<0.4gngg4.5gn(A0.05)(A0.02)系统的单位阶跃响应为C(t)=1-e-帥sin(wt+0)d动态性能指标计算公式为1上升时间峰值时间冗t=-pw兀_ei=Twvi_g22dn其中Td是有阻尼振荡周期,且Td=12兀,f是有阻尼振荡频率。wdd超调量_统=e、i_g2x100%调整时间3(A0.05)或

13、t(A二0.02)振荡次数t1.-1_g2_1.5N=fTd(A=0.05)N=T-g2_2dA=0.02)5、系统稳定性分析特征根必须全部分布在S平面的左半部,即具有负实部。已知系统的特征方程时,可采用Routh稳定判据或Hurwitz稳定判据判定系统的稳定性。特征多项式各项系数均大于零(或同符号)是系统稳定的必要条件。Routh判据:由特征方程各项系数列出Routh表,如果表中第一列各项严格为正,则系统稳定;第一列出现负数,则系统不稳定,且第一列各项数值符号改变的次数就是正实部特征根的数目。Hurwitz判据:由特征方程各项系数构成的各阶Hurwitz行列式全部为正,则系统稳定。劳斯稳定判

14、据是根据所列劳斯表第一列系数符号的变化,去判别特征方程式根在S平面上的具体分布,过程如下:如果劳斯表中第一列的系数均为正值,则其特征方程式的根都在S的左半平面,相应的系统是稳定的。如果劳斯表中第一列系数的符号有变化,其变化的次数等于该特征方程式的根在S的右半平面上的个数,相应的系统为不稳定。在应用劳斯判据时,有可能会碰到以下两种特殊情况。劳斯表某一行中的第一项等于零,而该行的其余各项不等于零或没有余项,这种情况的出现使劳斯表无法继续往下排列。解决的办法是以一个很小的正数e来代替为零的这项,据此算出其余的各项,完成劳斯表的排列。劳斯表中出现全零行则表示相应方程中含有一些大小相等符号相反的实根或共

15、轭虚根。这种情况,可利用系数全为零行的上一行系数构造一个辅助多项式,并以这个辅助多项式导数的系数来代替表中系数为全零的行。完成劳斯表的排列。6、稳态误差的计算kn(Ts+1)i令系统开环传递函数为G(s)H(s),n>msvn(Ts+1)jj1v00型系统v:为系统中含有的积分环节数<v-1I型系统v2II型系统v>2时,II型以上的系统,实际上很难使之稳定,所以这种类型的系统在控制工程中一般不会碰到。(复合系统)K=limH(s)R(s)(3-66)pSTOK=limSH(s)G(s)=limvsTOSTOSV-1K=limS2G(s)H(s)=lim-astOstOSv-

16、2(3-68)(3-7O)类型误差系数静态位置误差系数KP速度Kv加速度Ka0型K00I型OOK0II型OOOOKess类型输入r(t)=Rr(t)=vtr(t)=2a120型OOOOI型0VoOOII型00a。第二章:知识点1、根轨迹中,开环传递函数G(s)H(s)的标准形式是mH(JGO)=:='一n-A)i*ifran($-跖)一1YPd2、根轨迹方程是<4-7)(4-8)相角条件:绘制根轨迹的充要条件mti2Z7SZ'二邑血+1"<4T)""I*?rleyi*一制幅值条件:,3、根轨迹法的绘制规则。4、能用根轨迹法分析系统的主要

17、性能,掌握闭环主导极点与动态性能指标之间的关系。能定性分析闭环主导极点以外的零极点对动态性能的影响。第三章:知识点1、频率特性基本概念和其几何表示法。频率特性的定义如下:稳定的线性定常系统,其对正弦函数输入的稳态响应,称为频率响应。输出与输入的振幅比,称为系统的幅频特性。它描述了系统对不同频率的正弦函数输入信号在稳态情况下的衰减(或放大)特性;输出与输入的相位差,称为系统的相频特性。相频特性描述了系统的稳态输出对不同频率的正弦输入信号在相应上产生的相角迟后(对应9®)0或相角超前(对应申()>0)的特性;幅频特性及相频特性,或者说,在正弦输入下,线性定常系数或环节、其输出的稳态

18、分量的复数比、称为系统或环节的频率特性,记为(7®),用式子表示频率特性与传递函数间的关系(jw)=0(s)s=7®图形表示法工程上常用图形来表示频率特性,常用的有1. 极坐标图也称奈斯特(Nyquist)图、幅相频率特性图2. 伯德(Rode)图伯德图又称为数频率特性图、它由两张图组成:一张是对数幅频图,另一张是对数相频图,两张图的横向坐标相同,表示频率®2、典型环节的频率特性和开环系统的典型环节分解及其频率特征曲线的绘制。3、系统开环频率特性绘制极坐标图伯德图4、奈奎斯特稳定判据这一判据可表示为:Z二R+PZ=函数F(S)1+H(S)G(S)在右半s平面内的零

19、点数R二对-1+jO点顺时针包围的次数P=函数H(s)G(s)在右半s平面内的极点数如果P不等于零,对于稳定的控制系统,必须Z=0或R=-P,这意味着必须反时针方向包围-1+j0点P次。如果函数H(s)G(s)在右半s平面内无任何极点,则Z=R。因此,为了保证系统稳定,G(jS)H(j®)的轨迹必须不包围-1+j0点。伯德图设N为对数幅频特性曲线在0dB以上的频段内,对数相频特性对-180度线正.负穿越次数之差,则z=P-2N.z=0时闭环系统稳定。5、稳定裕度1.)稳定裕度相角裕度为丫=180。+2.)幅值裕度为h1G(j®x)h(j®x)6、闭环系统频域性能指

20、标和时域指标的转换。自测题第一章自动控制的一般概念1. 自动控制是在人不直接的情况下,利用外部装置使被控对象的某个参数(被控量)按的要求变化。2. 由被控和自动按一定的方式连接起来,完成一定的自动控制任务,并具有预定性能的动力学系统,称为自动控制系统。3. 闭环控制系统的特点是:在控制器与被控对象之间不仅有正向控制作用,而且还有控制作用。此种系统高,但稳定性较差。4. 开环控制系统的特点是:在控制器与被控对象之间只作用,没有反馈控制作用。此种系低,但稳定性较高。5. 在经典控制理论中,广泛使用的分析方法有和。6. 温度控制系统是一种控制系统,一般对系统的指标要求比较严格。7. 对于一个自动控制

21、系统的性能要求可以概括为三个方面:、快速性和。8. 火炮跟踪系统是一种控制系统,一般对系统的指标要求较高。9. 反馈控制系统是根据给定值和的偏差进行调节的控制系统。第二章自动控制的数学模型1. 数学模型的形式很多,常用的有微分方程、和状态方程等。2. 线性定常系统的传递函数,是在条件下,系统输出信号的拉氏变换与输入信号的拉氏变换的比。3. 传递函数只取决于系统的参数,与外作用无关。4根据欧拉公式和拉普拉斯变换的线性法则,可以示出的拉氏变换,的拉氏变换为。5. 根据拉普拉斯变换的定义,单位斜坡函数t的拉普拉斯变换为,指数函数的拉普拉斯变换为。6. 二阶振荡环节的标准传递函数是。7多个环节的并联连

22、接,其等效传递函数等于各环节传递函数的。8. 正弦函数sinst的拉氏变换为。函数的拉氏变换为。9. 利用公式可以根据复杂的信号流图直接求出系统总的传递函数。10. 比较点从输入端移到输出端,“加倒数”;引出点从输入端移到输出端,“加本身”。()11. 比较点从输出端移到输入端,“加本身”;引出点从输出端移到输入端,“加倒数”。()12梅逊公式可用来求系统的输入量到系统中任何内部变量的传递函数。()13. 梅逊公式可用来求系统任意两个内部变量Cl(s)到C2(s)之间的传递函数。(13.正弦函数sin的拉氏变换是()A.B.s1C.D.s2+32s2+3214. 传递函数反映了系统的动态性能,

23、它与下列哪项因素有关?()A.输入信号B.初始条件C.系统的结构参数D.输入信号和初始条件15. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个()A.比例环节B.微分环节C.积分环节D.惯性环节16. 对复杂的信号流图直接求出系统的传递函数可以采用()A.终值定理B.初值定理C.梅森公式D.方框图变换17. 采用系统的输入、输出微分方程对系统进行数学描述是()A.系统各变量的动态描述B.系统的外部描述C.系统的内部描述D.系统的内部和外部描述18. 拉氏变换将时间函数变换成()A.正弦函数B.单位阶跃函数C.单位脉冲函数D.复变函数19. 线性定常

24、系统的传递函数,是在零初始条件下()A.系统输出信号与输入信号之比B.系统输入信号与输出信号之比C. 系统输入信号的拉氏变换与输出信号的拉氏变换之比D. 系统输出信号的拉氏变换与输入信号的拉氏变换之比D.平均值C.加权平均由电子线路构成的控制器如图,它是(20. 方框图化简时,并联连接方框总的输出量为各方框输出量的(A.乘积B.代数和21.C.22A.5+3sB.PD控制器D.P控制器PI控制器PID控制器PID控制器的传递函数形式是()B.5+3/sC.5+3s+3/sD.5+1/(s+1)23. PID控制器中,积分控制的作用是()A.克服对象的延迟和惯性B.能使控制过程为无差控制C.减少

25、控制过程的动态偏差D.使过程较快达到稳定24. 终值定理的数学表达式为(A.x(s)二limx(t)=limX(s)tsstOC.x(s)二limx(t)二limsX(s)tTOXT8)B.x(s)二limx(t)二limX(s)tTgsTgD.x(g)二limx(t)二limsX(s)tTgsTO25.梅森公式为()A.26.区pABkkk=1函数e-atcos®t丄艺Ak=1pACkkAk的拉氏变换是(D、丄工pAAkkA、(s+a)2+32a(s+a)2+32s+a(s+a)2+32(s+a)2+32例1.求出下图所示电路的传递函数、比例系数和时间常数。例2求出下图所示电路的传

26、递函数、比例系数和时间常数。R2100K例3求出下图所示电路的传递函数、分度系数和时间常数。解:应用复阻抗法得例4求出下图所示电路的传递函数、分度系数和时间常数。oD第三章时域分析法三、自测题1线性定常系统的响应曲线仅取决于输入信号的和系统的特性,与输入信号施加的时间无关。2. 阶系统1/(TS+1)的单位阶跃响应为。3. 二阶系统两个重要参数是,系统的输出响应特性完全由这两个参数来描述。4. 二阶系统的主要指标有超调量MP%、调节时间ts和稳态输出C(g),其中MP%和ts是系统的指标,C(g)是系统的指标。5. 在单位斜坡输入信号的作用下,0型系统的稳态误差ess=。6. 时域动态指标主要

27、有上升时间、峰值时间、最大超调量和。7. 线性系统稳定性是系统特性,与系统的无关。8. 时域性能指标中所定义的最大超调量Mp的数学表达式是。9. 系统输出响应的稳态值与之间的偏差称为稳态误差ess。10. 二阶系统的阻尼比E在范围时,响应曲线为非周期过程。11. 在单位斜坡输入信号作用下,11型系统的稳态误差ess=。12. 响应曲线达到过调量的所需的时间,称为峰值时间tp。13. 在单位斜坡输入信号作用下,I型系统的稳态误差ess=。14. 二阶闭环控制系统稳定的充分必要条件是该系统的特征多项式的系数。15. 引入附加零点,可以改善系统的性能。16. 如果增加系统开环传递函数中积分环节的个数

28、,则闭环系统的稳态精度将提高,相对稳定性将。17. 为了便于求解和研究控制系统的输出响应,输入信号一般采用输入信号。18. 当系统的输入具有突变性质时,可选择阶跃函数为典型输入信号。()19. 暂态响应是指当时间t趋于无穷大时,系统的输出状态。()20. 在欠阻尼0VZV1情况下工作时,若Z过小,则超调量大。()21远离虚轴的极点对系统的影响很小。()22当系统的输入是随时间增长变化时,可选择斜坡函数为典型输入信号。()23稳态响应是指系统从刚加入输入信号后,到系统输出量达到稳定值前()24.闭环系统稳定的充要条件是系统所有特征根必须位于S平面的左半平()25若要求系统快速性好,则闭环极点应靠

29、近虚轴。()1. 控制系统的上升时间tr、调整时间ts等反映出系统的()A.相对稳定性B.绝对稳定C.快速性D.平稳性2. 时域分析中最常用的典型输入信号是()A.脉冲函数B.斜坡函数C.阶跃函数D.正弦函数3. 阶系统G(s)=K/(TS+1)的放大系数K愈小,则系统的输出响应的稳态值()A.不变B.不定C.愈小D.愈大4. 一阶系统G(s)=K/(TS+1)的时间常数T越大,则系统的输出响应达到稳态值的时间()A.越长B.越短C.不变D.不定5. 二阶系统当0Z1时,如果增加Z,贝9输出响应的最大超调量将Mp()A.增加B.减小C.不变D.不定6. 当二阶系统特征方程的根为具有负实部的复数

30、根时,系统的阻尼比为()A.Z<0B.Z=0C.0Z1D.Z217. 已知单位反馈控制系统在阶跃函数作用下,稳态误差ess为常数,则此系统为()A.0型系统B.I型系统C.II型系统D.III型系统8. 若一系统的特征方程式为(s+1)2(s-2)2+3=0,则此系统是()A.稳定的B.临界稳定的C.不稳定的D.条件稳定的9. 一般讲,如果开环系统增加积分环节,则其闭环系统的相对稳定性将()A.变好B.变坏C.不变D.不定10. 控制系统的稳态误差ess反映了系统的()A.稳态控制精度B.相对稳定性C.快速性D.平稳性11已知单位负反馈控制系统的开环传递函数为G(s)=10(S+,该系统

31、闭环系统是()s(s-1)(s+5)A.稳定的B.条件稳定的C.临界稳定的D.不稳定的12. 下列判别系统稳定性的方法中,哪一个是在频域里判别系统稳定性的判据()A.劳斯判据B.赫尔维茨判据C.奈奎斯特判据D.根轨迹法13. 已知系统的特征方程为(s+1)(s+2)(s+3)=s+4,则此系统的稳定性为()A.稳定B.临界稳定C.不稳定D.无法判断14. 令线性定常系统传递函数的分母多项式为零,则可得到系统的()A.代数方程B.特征方程C.差分方程4D.状态方程15. 设一单位反馈控制系统的开环传递函数为G0(s)=-,要求KV=20,则K=()A.10B.20C.30D.40s(s+2)16

32、. 设G(s)H(s)=k(s+1°),当k增大时,闭环系统()(s+2)(s+5)A.由稳定到不稳定B.由不稳定到稳定C.始终稳定D.始终不稳定17. 过阻尼系统的动态性能指标是调整时间七$和()A.峰值时间tpB.最大超调量MpC.上升时间trD.衰减比Mp/Mp18. 设控制系统的开环传递函数为G(s)=10,该系统为()s(s+1)(s+2)A.0型系统B.1型系统C.2型系统D.3型系统例1已知系统的结构如下图所示,单位阶跃响应的超调量。=16.3%,峰值时间tp=1s。试求:(1) 开环传递函数G(s);(2)闭环传递函数(s);(3)根据已知性能指标Mp%、tp确定参数

33、K及t;(4)计算等速输入(恒速值R=1.5)时系统的稳态误差。例2已知控制系统的结构如下图所示。(1) 当b=0时,试确定单位阶跃输入时系统的阻尼系数、自然频率、最大超调量,以及由单位斜波输入所引起的稳态误差。(2) 确定系统的阻尼比等于0.8时的速度反馈常数b的值,并确定在单位输入时的最大超调量和单位斜波输入所引起的稳态误差。(3) 怎样使第(2)问的Z=0.8保持不变而使其稳态误差等于第(1)问的稳态误差值?(3)怎样使第(2)问的Z=0.8保持不变而使其稳态误差等于第(1)问的稳态误差值?用比例加微分串联校正可以达到目的,如上图所示。第四章根轨迹法1. 若根轨迹位于实轴上两个相邻的开环

34、极点之间,则这两个极点之间必定存点。2. 根轨迹图必对称于根平面的。3. 如果实轴上某一段右边的开环实数零点、极点总个数为4已知-2+j0点在开环传递函数为G(s)H(s)=对应的k值为。s(s+4)(s2+4s+20)5.确定根轨迹大致走向,用以下哪个条件一般就够了?(A.特征方程B.幅角条件C.幅值条件计算根轨迹渐近线倾角的公式为()6A7.-(21+1)兀C)A.8.A.9.A.10A.11A.卩+1)兀P=rBP=n+mn-m根轨迹渐近线与实轴的交点公式为(工p-KzjiC.m-nK(s+z)1(s+p)(s+p)12KnP+Kmzjijin+mB.12,则这一段就是根轨迹的一部分。-

35、的系统的根轨迹上,则该点)D.幅值条件+幅角条件p_卩(21+1)兀n-m乞Z-事ij注ji_n-mKnP-Kmzjijii1n-m开环传递函数G(s)H(s)=(-0,-p2,-z1,-p1实轴上根轨迹右端的开环实数零点、极点的个数之和为(零B.大于零C.奇数当二阶系统的根分布在右半根平面时,系统的阻尼比2为(E0B.E=0C.0E1D.g1当二阶系统的根分布在根平面的虚轴上时,系统的阻尼比为(E0B.E=0C.0E1D.E21其中p2z1p10,则实轴上的根轨迹为()B.(-0,-p2C.-p1,+00)D.D.-z1,-p1开环传递函数为G(s)=k%穿2)其根轨迹的起点为(偶数)A.0

36、,-3B.-1,-2C.0,-6D.-2,-413.开环传递函数为G(s),则根轨迹上的点为(s(s+6)A.-6+jB.-3+jC.-jD.jk(s+1)14设开环传递函数为G(s)H(s)=s(s*2)(s+3),其根轨迹渐近线与实轴的交点为(A0B.1C.2D.3k(s+5)15. 开环传递函数为G(s)H(s)=的根轨迹的弯曲部分轨迹是()s(s+2)A.半圆B整圆C.抛物线D.不规则曲线k16. 、开环传递函数为G(s)H(s)=(s_i)(s2+6s+10)其根轨迹渐近线与实轴的交点为()A-5/3B-3/5C3/5D5/3k17.设开环传递函数为G(s)=A1/4B1/2第五章频

37、率分析法s(s+1),在根轨迹的分离点处,其对应的k值应为(C1D41线性定常系统在正弦信号输入时,稳态输出与输入的相位移随频率而变化的函数关系称为2积分环节的幅相频率特性图为;而微分环节的幅相频率特性图为。3. 阶惯性环节G(s)=1/(1+Ts)的相频特性为巾(3)=,比例微分环节G(s)=1+Ts的相频特性为巾(s)=。4. 常用的频率特性图示方法有极坐标图示法和图示法。5频率特性的极坐标图又称图。6利用代数方法判别闭环控制系统稳定性的方法有和赫尔维茨判据两种。7设系统的频率特性为,则称为。8.3从0变化到+8时,惯性环节的频率特性极坐标图在象限,形状为圆。9频率特性可以由微分方程或传递

38、函数求得,还可以用方法测定。10. 0型系统对数幅频特性低频段渐近线的斜率为dB/dec,高度为20lgKp。11. 型系统极坐标图的奈氏曲线的起点是在相角为的无限远处。12. 积分环节的对数幅频特性曲线是一条直线,直线的斜率为dBdec。13. 惯性环节G(s)=1/(Ts+1)的对数幅频渐近特性在高频段范围内是一条斜率为一20dB/dec,且与3轴相交于3=的渐近线。14设积分环节的传递函数为G(s)=K/s,则其频率特性幅值M(3)=()A.K/3B.K/32C.1/3D.1/3215.3从0变化到+8时,迟延环节频率特性极坐标图为()A.圆B.半圆C.椭圆D.双曲线16. 二阶振荡环节

39、的相频特性巾(3),当时38,其相位移巾(3)为()A.-270°B.-180°C.-90°D.0°17. 某校正环节传递函数Gc(s)=l°0s+1,则其频率特性的奈氏图终点坐标为()A.(0,j0)B.(1,j0)10s+1C.(1,j1)D.(10,j0)18. 利用奈奎斯特图可以分析闭环控制系统的()A.稳态性能B.动态性能C.稳态和动态性能D.抗扰性能19若某系统的传递函数为G(s)=K/(Ts+1),则其频率特性的实部R(3)是()KA.1+W2T2B.C.1+®TD.-K1+®T20.设某系统开环传递函数为G(

40、s)=10(s2+s+10)(s+1)则其频率特性奈氏图起点坐标为(A.(-10,j0)B.(-1,j0)21设微分环节的频率特性为G(j3)A.正虚轴B.负虚轴C.(1,j0)D.(10,j0)当频率3从0变化至8时,其极坐标平面上的奈氏曲线是(C.正实轴D.负实轴22.设某系统的传递函数G(s)=10/(s+1),则其频率特性的实部()1010A.B.1+w2C.101+wTD.101+wT23设惯性环节的频率特性为G(j3)=10/(j3+1),当频率3从0变化至8时,则其幅相频率特性曲线是一个半圆,位于极坐标平面的()A.第一象限B.第二象限C.第三象限D.第四象限1020设某系统开环传递函数为G(s)=(s2+s+io)(s+1),则其频率特性奈氏图起点坐标为()A.(-10,j0)B.(-1,j0)('C.(1,j0)D.(10,j0)21设微分环节的频率特性为G(js),当频率3从0变化至a时,其极坐标平面上的奈氏曲线是()A.正虚轴B.负虚轴C.正实轴D.负实轴101+W2B.22.设某系统的传递函数G(s)=10/(s+l),则其频率特性的实部()1010_101+®2C.1+®TD._1+®T23设惯性环节的频率特性为G(js)=10/(js+i),当频率3从0变化至a时,则其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论