




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、73123012870523321xxx422881221xxnnnjninijinjaaaaaaaaaA111112nixxxX1nibbbB1212111yybaxx12345102030405060X=1:5X=x oese(size(x)Y=10 30 32 45 48A=xy,即为线性方程的两个系数误差多大?怎么求?(相对误差、绝对误差)如何做非线性回归x=1:10; y=20 21 24 24.6 26 30.1 29.7 38 43 53123456789102025303540455055方程形式为y=ax2+bx+c实际上nnnyycbaxxxx121211121204011
2、01)(SSSSG-6-4-20246-6-4-20246-60-40-200204060-40-30-20-10010203040-3-2-10123-2.5-2-1.5-1-0.500.511.522.5-50-40-30-20-1001020304050-50-40-30-20-1001020304050-4-3-2-101234-4-3-2-1012343.1 常规统计分析dtetfGti)()()sin()cos(titeti5243)(23xxxxf01234567-1-0.8-0.6-0.4-0.200.20.40.60.81三维曲面 1)产生网格数据 X,Y = meshgri
3、d(x,y) 2)绘制网格曲面 mesh(X,Y,Z) mesh(Z) mesh(.,C) meshc(.) meshz(.) 3)绘制曲面 surf(Z) surf(X,Y,Z) surf(X,Y,Z,C) surfc(.) 4)绘制等值线 contour(Z,n)r=sqrt(x.2+y.2)+0.1;z=sin(r)./rPeaks(N) view(az,el) :观察方向 1)将a中大于0的元素加和 2)将a中小于0的元素加5function a b c=myf1(x)l=length(x); %求x中元素数量 a=0;b=0;c=0; for k=1:(l-1) if x(k)x(k
4、+1) a=a+1; else if x(k)0); b=sum(dx5 subp(p+l,0.71*l*exp(i*pi/4); subp(p+l,0.71*l*exp(-i*pi/4);End; end00( , )()yf x yy xy ),(11kkkkyxhfyy1kkkxxh- Euler),(),(2121121211hKyhxfKyxfKKKhyyiiiiii 实际上是前后两点斜率的平均值。上式叫二阶RungeKutta法),(),(),(),()22(34222312221432161hKyhxfKKyxfKKyxfKyxfKKKKKyyiihihihihiiihii上式叫
5、四阶RungeKutta法 t,x=ode23(f,ts,x0,options) t,x=ode45(f,ts,x0,options) 分别为二阶,四阶R-K方法,其中f微分方程(组)的描述函数;ts:为微分点的时间序列,求出的x,为与ts对应的解序列,x0为初值,options为求解过程误差控制参数,可以省略0)0();cos(txtx1)定义方程函数 function dx=mf(t,x); dx=cos(t); end2)求解 ts=0:0.01:10; t,x=ode45(mf,ts,0);Plot(x);%显示曲线 1 , 0; 2)0(;2ttytyy1)定义方程函数 functi
6、on dy=mf(t,y); dy=-t*y.2; end2)求解 ts=0:0.01:1; t,y=ode45(mf,ts,2);Plot(y);%显示曲线2222)()()()()()(yatxcyatbdtdyyatxcxcbdtdx其中:a=20;b=40;c=15;t的范围0,0.5,x(0)=0;y(0)=0注意:为二元微分方程1)编辑函数function dx=mf(t,x) a=20; b=40; c=15; s=sqrt(c-x(1)2+(a*t-x(2)2); dx=b*(c-x(1)/s;b*(a*t-x(2)/s;end函数返回值dx/dt;dy/dt2)ts=0:0.
7、01:0.5; x0=0 0; t,x=ode45(mf,ts,x0); %采用缺省的精度求解X(1)x,x(2)y5 . 0 . 0; 2)0(; 1)0(;1110910ttvtuvuvvuu1)定义方程函数function du=mf(t,u); du=-10*u(1)+9*u(2);10*u(1)-11*u(2);end2)求解 ts=0:0.01:0.5; t,u=ode45(mf,ts,1 2); 1 , 0; 2)0(; 1)0(; 010572 ttytyyyy定义微分方程函数function dy=mf(t,y); dy=0;0; dy(1)=y(2); dy(2)=(7*y
8、(2)-5*y(1)+10)/2;end21057,;12221121yyyyyyyyy则方程转换为:设:求解:t,y=ode45(mf,0:0.01:1,2 1)00.20.40.60.8105101520实际上y(2),应该与y(1)相同203521dxxx function yy=mf(x); yy=1./(x.3-2*x-5); end21212122xxexxexx0202212121xxexxexx function f=myf1(x) f=2*x(1)-x(2)-exp(-x(1); -x(1)+2*x(2)-exp(-x(2); end求解:x=fsolve(myf1,-5;-5)function b c=jg(); global l1 l2 l3 l4 q1 q4; l1=20;l2=40;l3=30;l4=50; q4=0; x0=1 1; b=;c=; op=optimset(Display,off); for q1=0:pi/180:2*pi; x=fsolve(my,x0,op); x0=x; b=b;l1*exp(i*q1); c=c;l2*exp(i*x(1); endendfunction f=my(x) glo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/TR 18228-5:2025 EN Design using geosynthetics - Part 5: Stabilization
- 2025年度废电池无害化处理承包服务
- 2025年度皮草产品售后服务合同范本
- The 2025 Optimove Insights消费者营销疲劳报告
- 2025年度房地产市场动态监测评估合同
- 2025年图形、图象处理设备项目建议书
- 2025年度二手车交易居间服务合同范本
- 2025年度大型体育赛事赞助商权益转让合同
- 2025年度企业安全协管员岗位职责合同
- 2025年度离婚后债务分配与财产分割协议书
- 新教材人教版高中数学必修第二册全册教案
- 班(组)战斗动作训练教案
- 农产品电商运营-完整全套课件
- 唐河县泌阳凹陷郭桥天然碱矿产资源开采与生态修复方案
- CBCC中国建筑色卡色
- 科研项目汇报ppt
- “不作为、慢作为、乱作为”自查自纠报告范文(三篇)
- 上海市杨浦区2022届初三中考二模英语试卷+答案
- 公共事业管理案例
- 光伏电站小EPC合同模版
- GB 9706.202-2021医用电气设备第2-2部分:高频手术设备及高频附件的基本安全和基本性能专用要求
评论
0/150
提交评论