




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、计量经济学郭存芝版19章答案第一章1计量经济学是一门什么样的学科答:计量经济学的英文单词是Econometrics,本意是“经济计量”,研究经济问题的计量方法,因此有时也译为“经济计量学”。将Econometrics译为“计量经济学”是为了强调它是现代经济学的一门分支学科,不仅要研究经济问题的计量方法,还要研究经济问题发展变化的数量规律。可以认为,计量经济学是以经济理论为指导,以经济数据为依据,以数学、统计方法为手段,通过建立、估计、检验经济模型,揭示客观经济活动中存在的随机因果关系的一门应用经济学的分支学科。2计量经济学与经济理论、数学、统计学的联系和区别是什么答:计量经济学是经济理论、数学
2、、统计学的结合,是经济学、数学、统计学的交叉学科(或边缘学科)。计量经济学与经济学、数学、统计学的联系主要是计量经济学对这些学科的应用。计量经济学对经济学的应用主要体现在以下几个方面:第一,计量经济学模型的选择和确定,包括对变量和经济模型的选择,需要经济学理论提供依据和思路;第二,计量经济分析中对经济模型的修改和调整,如改变函数形式、增减变量等,需要有经济理论的指导和把握;第三,计量经济分析结果的解读和应用也需要经济理论提供基础、背景和思路。计量经济学对统计学的应用,至少有两个重要方面:一是计量经济分析所采用的数据的收集与处理、参数的估计等,需要使用统计学的方法和技术来完成;一是参数估计值、模
3、型的预测结果的可靠性,需要使用统计方法加以分析、判断。计量经济学对数学的应用也是多方面的,首先,对非线性函数进行线性转化的方法和技巧,是数学在计量经济学中的应用;其次,任何的参数估计归根结底都是数学运算,较复杂的参数估计方法,或者较复杂的模型的参数估计,更需要相当的数学知识和数学运算能力,另外,在计量经济理论和方法的研究方面,需要用到许多的数学知识和原理。计量经济学与经济学、数学、统计学的区别也很明显,经济学、数学、统计学中的任何一门学科,都不能替代计量经济学,这三门学科简单地合起来,也不能替代计量经济学。计量经济学与经济学的主要区别在于:经济学一般根据逻辑推理得出结论,说明经济现象和过程的本
4、质与规律,大多是定性的表述。虽然理论经济学有时也会涉及经济现象和过程的数量关系,如产出随投入要素的增减而增减,但不提供这类数量关系的具体度量,不说明随投入要素的增减产出增减多少。计量经济学则要对经济理论所确定的数量关系作出具体估计,也就是对经济理论进行经验的证明。计量经济学与统计学最根本的区别在于:第一,计量经济学是以问题为导向,以经济模型为核心的,统计学则是以数据为核心,常常也是以数据为导向的。虽然现代统计学并不排斥经济理论和模型,有时也会利用它们,但不一定以特定的经济理论或模型为基础和出发点,常常可以通过对经济数据的统计直接得出结论,侧重于数据的采集、筛选和处理;第二,计量经济学对经济理论
5、的实证作用较强。计量经济学从经济理论和经济模型出发,进行分析的过程,实际上是对经济理论证实或证伪的过程。这使得它对经济理论的验证作用很强,比统计学强的多;第三,计量经济学对经济问题有更重要的指导作用。计量经济学通常不仅要对数据进行处理和分析,获得经济问题的一些数字特征,而且要借助于经济理论和数学工具,对经济问题作出更深刻的解剖和解读。经过计量经济分析实证检验的经济理论和模型,能对分析、研究和预测更广泛的经济问题起到重要作用。计量经济学与数学的区别不言而喻,因为数学只是计量经济分析及其理论研究的工具,与实证分析经济问题的计量经济学的区别显而易见。3经典计量经济学与非经典计量经济学是如何划分的答:
6、经典计量经济学与非经典计量经济学的划分可从计量经济学的发展时期及其理论方法上的特征来把握。经典计量经济学一般指上世纪70年代以前发展起来的计量经济学,在理论方法上具有以下五个方面的共同特征:第一,在模型类型上,采用随机模型;第二,在模型导向上,以经济理论为导向;第三,在模型结构上,采用线性或可化为线性的模型,反映变量之间的因果关系;第四,在数据类型上,采用时间序列数据或截面数据;第五,在估计方法上,采用最小二乘法或最大似然法。非经典计量经济学一般指上世纪70年代以后发展起来的计量经济学,也称现代计量经济学,与经典计量经济学理论方法上的五个方面的特征相对应,非经典计量经济学包括模型类型非经典计量
7、经济学问题、模型导向非经典计量经济学问题、模型结构非经典计量经济学问题、数据类型非经典计量经济学问题、估计方法非经典计量经济学问题五个方面的内容。4计量经济研究中如何进行理论模型的设定答:理论模型的设定,是对经济问题的数学描述或模拟,涉及变量的设定、模型函数形式的设定、参数取值范围的设定三个方面。理论模型设定中变量的设定,主要是解释变量的设定,因为被解释变量是作为研究对象的变量,可由研究问题本身直接确定。解释变量的设定需要通过以下几个方面把握:第一,解释变量应是根据经济理论或实践经验确定的被解释变量的主要影响因素,遗漏了主要影响因素或将次要影响因素甚至不相关因素引入模型,都可能导致研究结果的偏
8、误;第二,若有多个解释变量,需注意避免解释变量之间的相关性。解释变量之间若存在一定的相关关系,可直接影响参数估计量的性质,降低研究结果的可靠性;第三,在设定解释变量的同时,应注意保证与解释变量对应的观察数据的可得性,没有样本观察数据的支持,就得不到模型的参数估计值,进一步的研究也将无法展开。模型函数形式的设定,首先,可以直接采用数理经济学已有的函数形式,另外,也可以根据样本观察数据反映出来的变量之间的关系设定,对于其他事先无法确定模型函数形式的情况,可采用各种可能的函数形式进行模拟,选择模拟结果最好的函数形式。需要指出的是,这里设定的模型函数形式只是模型函数形式的初步设定,在模型参数估计和检验
9、的过程中,大多还会对模型的函数形式进行逐步调整,以得到较为合理的模型函数形式。参数取值范围的设定主要根据经济理论或实践经验给出,参数取值范围的设定可用来检验模型参数估计结果的合理性。5计量经济学模型中的待估参数有哪些答:计量经济学模型的参数包括模型的结构参数和随机误差项的分布参数两大类。模型的结构乘数是包含在模型方程中的反映模型结构特征的参数,每一个结构参数以一个字母(多为希腊字母)表示,例如生产函数模型中的参数、,消费函数中的参数、,都是模型的结构参数。随机误差项的分布参数主要是随机误差项的均值和方差。6计量经济学模型的检验包括哪几个方面为什么要进行模型的检验答:因为经济现象和过程本身是十分
10、复杂的,理论模型的整个建立过程,从模型设定到参数估计,都可能存在一定的偏误。在模型设定过程中,可能由于所依据的经济理论对研究对象的解释不充分,或者由于自身对研究对象的认识的欠缺,导致变量选择的偏差或模型函数形式设定的错误;在模型参数估计过程中,可能由于样本数据的统计错误、代表性差,或者由于其他信息的不可靠,导致参数估计值与真实值存在较大差距。此外,无论是单方程计量经济学模型,还是联立方程计量经济学模型,都是建立在一定的假设前提下的,如果模型的建立违背了计量经济学的基本假设,也会导致错误的结果。对模型的检验通常包括经济意义经验、统计推断检验、计量经济检验、模型预测检验四个方面。7如何利用计量经济
11、学模型进行政策评价答:政策评价是将经济目标作为被解释变量,将经济政策作为解释变量,利用计量经济学模型对各种可供选择的经济政策方案的实施后果进行模拟测算,从中选择较好的政策方案。计量经济学模型用于政策评价,主要有三种方法:1)工具目标法。给定经济目标,即给定被解释变量的取值,通过对模型求解,确定解释变量的取值,即确定具体的经济政策方案。2)政策模拟。将各种不同的政策方案代入模型,计算各自的目标值,通过对目标值的比较决定经济政策方案的取舍。3)最优控制方法。将计量经济学模型与最优化方法结合起来,选择使目标达到最优的政策或政策组合。8计量经济学模型中的被解释变量和解释变量、内生变量和外生变量是如何划
12、分的答:在单方程计量经济学模型中,按照因果差异,将变量分为被解释变量(explained variable)与解释变量(explanatory variable)。被解释变量是模型的分析研究对象,是具有某种概率分布的随机变量,也称为“因变量”或“应变量”(dependent variable)、“回归子”(regressand)等。解释变量是分析研究对象的主要影响因素,是确定性的变量,也称为“自变量”(independent variable)、“回归元”(regressor)等。在联立方程计量经济学模型中,按是否由模型系统决定,将变量分为内生变量(endogenous variables)和
13、外生变量(exogenous variables)两大类。内生变量是由模型系统决定同时可能也对模型系统产生影响的变量,是具有某种概率分布的随机变量,外生变量是不由模型系统决定但对模型系统产生影响的变量,是确定性的变量。9计量经济学模型中包含的变量之间的关系主要有哪些答:计量经济学模型中变量之间的关系主要是解释变量与被解释变量之间的因果关系,包括单向因果关系、相互影响关系、相互影响关系。1)单向因果关系经济变量之间的单向因果关系是单方程计量经济学模型研究的对象,指经济变量之间存在单向的内在联系,一个(一组)经济变量的水平直接影响或决定另一个经济变量的水平。2)相互影响关系经济变量之间的相互影响关
14、系是联立方程计量经济学模型研究的对象,指变量之间存在双向的因果关系,即一变量的变化既引起另一变量的变化,反过来也受另一变量变化的影响。3)相互影响关系恒等关系是一种特殊的变量关系,实际上通常就是一些变量的定义,例如,储蓄等于可支配收入减去消费。恒等关系是变量之间的确定关系,不需要针对它们进行分析。10什么是行为方程、技术方程、制度方程、定义方程、平衡方程各举一例说明。答:方程是关于变量之间关系的表达式,计量经济学模型中的方程分为随机方程、恒等方程两大类。随机方程主要包括行为方程、技术方程、制度方程等,恒等方程主要包括定义方程、平衡方程等。行为方程是反映居民、企业、政府经济行为的随机方程。如描述
15、居民消费与收入等的关系的消费函数方程,反映居民的消费行为,是一个行为方程;技术方程是反映客观经济技术关系的随机方程。如描述产出与投入要素之间关系的生产函数方程,反映一定生产技术条件下投入要素与产出之间的技术关系,是一个技术方程;制度方程是反映政府政策、规定的随机方程。如描述税收与课税对象数额、税率之间关系的税收函数方程,反映政府的税收规定,是一个制度方程;定义方程是反映经济学或经济统计学对经济变量的定义的恒等方程。以宏观经济学对国内生产总值的定义为例,按生产法,国内生产总值等于第一产业、第二产业、第三产业的增加值之和;平衡方程是反映经济变量之间的某种平衡关系的恒等方程。如描述某种产品的供给等于
16、需求的方程,反映该种产品的市场供需均衡,是一个平衡方程。11什么是单方程模型、联立方程模型、时间序列模型三者之间的关系如何答:单方程模型(single-equation model)是只含有一个方程的计量经济学模型;联立方程模型(simultaneous-equation model)是由多个方程组成的计量经济学模型;时间序列模型(time series model)是反映经济变量与时间变量之间关系的计量经济学模型。单方程模型、联立方程模型、时间序列模型分别适用于不同的情况和问题,分析方法也有区别。但这三种模型之间也有联系,联立方程模型是由多个单方程模型有机组合而成,单方程模型在联立方程模型中
17、有很多应用,时间序列模型也是一种单方程模型。12计量经济学中常用的数据类型有哪些各举一例说明。答:根据生成过程和结构方面的差异,计量经济学中应用的数据可分为时间序列数据(time series data)、截面数据(cross sectional data)、面板数据(panal data)和虚拟变量数据(dummy variables data)。时间序列数据是同一观察对象在不同时间点上的取值的统计序列,可理解为随时间变化而生成的数据。根据统计或观察的时间间隔的不同,时间序列数据有“年度数据”、“季节数据”、“月份数据”之分。比如说年度CPI、季节CPI、月份CPI。截面数据是许多不同的观察
18、对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。例如,以某100个居民家庭为样本,研究居民家庭的消费与收入之间的关系,这100个家庭的完整的收入和消费数据就是一个截面数据。面板数据是结合了时间序列数据和截面数据特征的数据,是多个观察对象在不同时间点上的取值的统计数据集合。例如,以某100个居民家庭为样本,研究从19902005年居民家庭的消费与收入之间的关系,这16年来的100个家庭的完整的收入和消费数据就是一个面板数据。虚拟变量数据是人为设定的虚拟变量的取值。例如人的性别分为女性和男性,可以用0和1来表示。13什么是数据的完整性、准确性、可比性、一致性答:1
19、)完整性,指模型中所有变量在每个样本点上都必须有观察数据,所有变量的样本观察数据都一样多。2)准确性,指样本数据必须准确反映经济变量的状态或水平。数据的准确性与样本数据的采集直接相关,通常是研究者所不能控制的。3)可比性,指数据的统计口径必须相同,不同样本点上的数据要有可比性。4)一致性,指母体与样本即变量与数据必须一致。14计量经济学作为一门独立的经济学科正式诞生的标志是什么答:计量经济学作为一门独立的学科,一般认为正式诞生于二十世纪三十年代初,其标志是:1930年挪威经济学家弗里希()、荷兰经济学家丁伯根()、美国经济学家费歇尔()等在美国俄亥俄州克里夫兰组织成立世界计量经济学会(Econ
20、ometric Society);1933年世界计量经济学会会刊计量经济学(Econometrica)创刊。15试论计量经济学在经济学科中的地位。答:理论与方法的迅速发展和在经济活动实践中的广泛应用,使计量经济学在经济学科中占有了十分突出的地位。一般认为,1969年诺贝尔经济学奖的设立,标志着经济学已成为一门科学。在经济学走向科学化的过程中,计量经济学起了特殊作用,因而1969年的首届诺贝尔经济学奖授予了创立计量经济学的弗里希和丁伯根。据统计,在历届诺贝尔经济学奖获得者中,有2/3以上是计量经济学家,有10位直接因为对计量经济学发展的贡献而获奖;有近20位担任过世界计量经济学会会长;有30余位
21、在获奖成果中应用了计量经济学。为此,第二届诺贝尔经济学奖得主美国著名经济学家萨缪尔森评价说:“第二次世界大战后的经济学是计量经济学时代”;第十二届诺贝尔经济学奖得主美国著名经济学家克莱因评价说:“计量经济学已经在经济学科中居于最重要的位置”。第二章 一元线性回归模型1什么是相关分析什么是回归分析相关分析与回归分析的关系如何答:相关分析(correlation analysis)是研究变量之间的相关关系的形式和程度的一种统计分析方法,主要通过绘制变量之间关系的散点图和计算变量之间的相关系数进行。回归分析(regression analysis)是研究不仅存在相关关系而且存在因果关系的变量之间的依
22、存关系的一种分析理论与方法,是计量经济学的方法论基础。相关分析与回归分析既有联系又有区别。联系在于:相关分析与回归分析都是对存在相关关系的变量的统计相关关系的研究,都能测度线性相关程度的大小,都能判断线性相关关系是正相关还是负相关。区别在于:相关分析仅仅是从统计数据上测度变量之间的相关程度,不考虑两者之间是否存在因果关系,因而变量的地位在相关分析中是对等的;回归分析是对变量之间的因果关系的分析,变量的地位是不对等的,有被解释变量和解释变量之分。2随机误差项在计量经济学模型中的作用是什么答:计量经济学是研究经济变量之间存在的随机因果关系的理论与方法,其中对经济变量之间关系的随机性的描述通过引入随
23、机误差项(stochastic error)的方式来实现。一个经济变量通常不能被另一个经济变量完全精确地决定,需要引入随机误差项来反映各种误差的综合影响,主要包括:1)变量的内在随机性的影响;2)解释变量中被忽略的因素的影响;3)模型关系设定误差的影响;4)变量观察值的观察误差的影响;5)其他随机因素的影响。3什么是总体回归函数什么是总体回归模型答:给定解释变量条件下被解释变量的期望轨迹称为总体回归曲线(population regression curve),或总体回归线(population regression line)。描述总体回归曲线的函数称为总体回归函数(population r
24、egression function)。对于只有一个解释变量的情形,总体回归函数为表示对于解释变量的每一个取值,都有被解释变量的条件期望与之对应,是的函数。对于含有多个解释变量、的情形,总体回归函数为表示对于解释变量、的每一组取值,都有被解释变量的条件期望与之对应,是、的函数。引入了随机误差项,称为总体回归函数的随机设定形式,也是因为引入了随机误差项,成为计量经济学模型,称为总体回归模型(population regression model)。4什么是样本回归函数什么是样本回归模型答:由于总体中包含的个体的数量往往非常多,总体回归函数的具体形式一般无法精确确定,是未知的,通常只能根据经济理论
25、或实践经验对总体回归函数进行合理的假设,然后根据有限的样本观察数据对总体回归函数进行估计。根据样本数据对总体回归函数作出的估计称为样本回归函数(simple regression function)。引入样本回归函数中的代表各种随机因素影响的随机变量,称为样本残差项、回归残差项或样本剩余项、回归剩余项,简称残差项或剩余项(residual),通常用表示。在样本回归函数中引入残差项后,得到的是随机方程,成为了计量经济学模型,称为样本回归模型。5线性回归模型中“线性”的含义是什么答:线性函数和通常意义下的线性函数不同,这里的线性函数指参数是线性的,即待估参数都只以一次方出现,解释变量可以是线性的,
26、也可以不是线性的。例如 都是线性回归模型。 都不是线性回归模型。6为什么要对模型提出假设一元线性回归模型的基本假设有哪些答:线性回归模型的参数估计方法很多,但各种估计方法都是建立在一定的假设前提之下的,只有满足假设,才能保证参数估计结果的可靠性。为此,本节首先介绍模型的基本假设。一元线性回归模型的基本假设包括对解释变量的假设、对随机误差项的假设、对模型设定的假设几个方面,主要如下:1)解释变量是确定性变量,不是随机变量。2)随机误差项具有0均值、同方差,且在不同样本点之间是独立的,不存在序列相关,即3)随机误差项与解释变量不相关。即 4)随机误差项服从正态分布,即5)回归模型是正确设定的。这5
27、条假设中的前4条是线性回归模型的古典假设,也称为高斯假设,满足古典假设的线性回归模型称为古典线性回归模型(classical linear regression model)。7参数的普通最小二乘估计法和最大似然估计法的基本思想各是什么答:普通最小二乘法(ordinary least squares,OLS)是最常用的参数估计方法,其基本思想是使样本回归函数尽可能好地拟合样本数据,反映在图上,就是要使样本散点偏离样本回归直线的距离总体上最小。在样本容量为n的情况下,就是要使n个样本点的被解释变量的估计值与实际观察值的偏差总体上最小。为避免残差的正负抵消,同时考虑计算处理上的方便,最小二乘法以表
28、示被解释变量的估计值与实际观察值的偏差总体上最小,称为最小二乘准则。最大似然法(maximum likelihood,ML),也称为最大或然法或极大似然法。最大似然法的基本思想是使从模型中取得样本观察数据的概率最大,就是说把随机抽取得到的样本观察数据看作是重复抽取中最容易得到的样本观察数据,即概率最大,参数估计结果应该反映这一情况,使得到的模型能以最大概率产生样本数据。8普通最小二乘参数估计量和估计值各有哪些性质答:在满足基本假设情况下,一元线性回归模型的普通最小二乘参数估计量是最佳线性无偏估计量。用普通最小二乘法估计得到的一元线性回归模型的样本回归函数具有如下性质:1. 样本回归线过样本均值
29、点,即点满足样本回归函数;2. 被解释变量的估计的均值等于实际值的均值,即;3. 残差和为零,即;4. 解释变量与残差的乘积之和为零,即;5. 被解释变量的估计与残差的乘积之和为零,即。9随机误差项方差的普通最小二乘估计和最大似然估计各是什么是否是无偏估计随机误差项的方差的普通最小二乘估计量为是一个无偏估计量。随机误差项的方差的最大似然估计量为与普通最小二乘估计量不同,随机误差项的方差的最大似然估计量是一个有偏估计量。10什么是拟合优度什么是拟合优度检验拟合优度通过什么指标度量为什么残差平方和不能作为拟合优度的度量指标答:拟合优度指样本回归线对样本数据拟合的精确程度,拟合优度检验就是检验样本回
30、归线对样本数据拟合的精确程度。样本残差平方和是一个可用来描述模型拟合效果的指标,残差平方和越大,表明拟合效果越差;残差平方和越小,表明拟合效果越好。但残差平方和是一个绝对指标,不具有横向可比性,不能作为度量拟合优度的统计量。所以拟合优度检验的度量指标是通过残差平方和构造的决定系数来进行检验的。决定系数公式是:与残差平方和不同,决定系数是一个相对指标,具有横向可比性,因此可以用作拟合优度检验。11一元线性回归模型的普通最小二乘参数估计量的分布如何答:由于的普通最小二乘估计量满足线性性,可表示为被解释变量的线性组合,所以也服从正态分布。所以 进行标准化变换可得 (1) (2)其中,随机误差项的方差
31、的真实值未知,只能用其无偏估计量替代。用无偏估计量替代后得到的的方差和标准差的估计量分别称为的样本方差和样本标准差,样本方差和样本标准差可分别用、表示,即 用替代后,式(1)、(2)中的统计量服从自由度为的分布,将替代后的统计量分别记为,有12什么是变量显著性检验答:一元线性回归模型中,是否显著不为0,反映解释变量对被解释变量的影响是否显著,所以常针对原假设,备择假设,进行检验,称为变量显著性检验。原假设为,备择假设为时,根据原假设对于给定的显著性水平,查自由度为的分布临界值,并计算的值,如果,接受原假设,认为解释变量对被解释变量的影响不显著;反之,如果则拒绝原假设,接受备择假设,认为解释变量
32、对被解释变量的影响显著。13为什么被解释变量总体均值的预测置信区间比个别值的预测置信区间窄答:被解释变量的总体均值的波动,主要取决于样本数据的抽样波动。被解释变量的个别值的波动,除受样本数据的抽样波动的影响外,还受随机误差项的影响。反映在式(2-50)、式(2-51)中,总体均值的预测置信区间窄于个别值的预测置信区间。14由19812005年的样本数据估计得到反映某一经济活动的计量经济学模型,利用模型对2050年该经济活动的情况进行预测,是否合适为什么答:因为在解释变量的样本均值处,样本观察数据的代表性往往较好,即抽样波动往往较小,被解释变量的总体均值和个别值的波动较小。反之,解释变量的取值偏
33、离的距离越大,样本观察数据的代表性往往越差,即抽样波动往往越大,被解释变量的总体均值和个别值的波动越大。由此可见,用回归模型作预测时,解释变量的取值不宜偏离解释变量的样本均值太大,否则预测精度会大大降低。所以利用模型对2050年的经济活动的情况进行预测不合适。15在一元线性回归模型中,用不为零的常数去乘每一个X值,对参数与的估计值、Y的拟合值、残差会产生什么样的影响如果用不为零的常数去加每一个X值,又会怎样解答:记原总体模型对应的样本回归模型为,则有, Y的拟合值与残差分别为记,则有记新总体模型对应的样本回归模型为则有于是在新的回归模型下,Y的拟合值与残差分析分别为可见,用不为零的常数去乘每一
34、个X值,的估计值变为原来的, 的估计值、Y的拟合值与模型的残差不变。如果记 于是新模型的回归参数分别为在新的回归模型下,Y的拟合值与残差分别为可见,如果用不为零的常数去加每一个X值,的估计值改变, 的估计值、Y的拟合值与模型的残差不变。16在一元线性回归模型中,用不为零的常数去乘每一个Y值,对参数、的估计值会产生什么样的影响如果用不为零的常数去加每一个Y值,又会怎样解答:记原总体模型对应的样本回归模型为,则有, Y的拟合值与残差分别为记,则有记新总体模型对应的样本回归模型为则有可见,用不为零的常数去乘每一个Y值,、的估计值会变为原来的倍。如果记 于是新模型的回归参数分别为可见,用不为零的常数去
35、加每一个Y值,的估计值比原来增大、的估计值不变。17(注意:本题的数据有误,需做修改,Y的均值和平方和、X的平方和做了修改)由某公司分布在12个地区的销售点的销售量(Y)和销售价格(X)数据得出如下结果: 1)建立销售量对价格的一元线性回归方程;2)求决定系数。解答:1)由已知条件知: 故又因为所以所以销售量对价格的一元线性回归方程为:2)由于而,所以所以18华尔街日报1999年年鉴(The Wall Street Journal Almanac 1999)公布的美国各航空公司业绩统计数据显示,各航空公司航班正点到达比率和每10万乘客投诉次数如表2-9所示。表2-9 美国各航空公司航班正点到达
36、比率和每10万乘客投诉次数航空公司名称航班正点率(%)投诉率(次/10万乘客)西南(Southwest)航空公司大陆(Continental)航空公司西北(Northwest)航空公司美国(US Airways)航空公司联合(United)航空公司美洲(American)航空公司德尔塔(Delta)航空公司美国西部(Americawest)航空公司环球(TWA)航空公司要求:1)画出这些数据的散点图;2)根据散点图确定两变量之间存在什么关系;3)求投诉率对航班正点到达比率的回归方程;4)对回归方程的斜率的意义作出解释;5)如果航班正点率为80%,估计每10万旅客投诉的次数是多少。解答:1)设投
37、诉率为被解释变量y,航班正点达比率为解释变量x,以y为纵轴,以x为横轴作散点图。2)根据散点图可确定两变量之间反向的相关关系,并呈现线性关系。3)可得回归方程:() ()4)上述的回归结果的斜率表示,航班正点达比率提高1个百分点,那么投诉率会将下降(次/10万乘客);5)如果航班正点率为80%,代入到回归方程,可得:19我国19792004年的国内生产总值与财政收入数据如表2-10所示。表2-10 我国国内生产总值与财政收入数据 单位:亿元年份财政收入Y国内生产总值X年份财政收入Y国内生产总值X19791980198119821983198419851986198719881989199019
38、9171711992199319941995199619971998199920002001200220032004要求:1)建立财政收入随国内生产总值变化的一元线性回归模型;2)对模型进行检验;3)若2005年的国内生产总值为,求2005年财政收入的预测值和预测置信区间(取=)。解答:1)建立财政收入随国内生产总值变化的一元线性回归模型:) 2)从回归的结果看,模型拟合较好。可决系数为,表明模型在整体上拟合得非常好。从截距项与斜率项的t检验值看,在5%的显著性水平下,斜率项通过检验,而截距项则不能通过。去掉截距项,重新估计模型,可得新的回归方程:并且从斜率项的值看,0<<1,符合
39、实际经济情况。3)若2005年的国内生产总值为,则2005年财政收入预测的点估计值:在95%的置信度下,的预测区间为:(,)第三章 多元线性回归模型1多元线性回归模型的基本假设有哪些在多元线性回归模型的参数估计量的无偏性、有效性的证明中各用了哪些解答 多元线性回归模型的基本假设也包括对解释变量的假设、对随机误差项的假设、对模型设定的假设几个方面,主要如下:1)解释变量是确定性变量,不是随机变量,解释变量之间不相关,即矩阵是阶非随机矩阵,矩阵列满秩据此,有矩阵非奇异。2)随机误差项具有0均值、同方差,且在不同样本点相互独立,不存在序列相关性,即用矩阵形式表示为 3)解释变量与随机误差项不相关,即
40、4)随机误差项服从正态分布,即用矩阵形式可表示为5)回归模型是正确设定的。同一元线性回归模型,在这5条假设中,前4条假设是古典假设,若前两条假设满足,第3条假设自然满足,并且由第2条假设有在证明参数估计量的无偏性时,利用了解释变量非随机或与随机干扰项不相关的假定;在证明参数估计量的有效性时用到了随机干扰项同方差且无序列相关的假定。2对于多元线性回归模型,证明(1)(2)(3)证 (1)由多元线性回归模型的基本假设可知:那么,(2)证明如下:(3)证明如下:3在多元模型中,为何要对决定系数进行调整调整的决定系数与F的关系如何解答 在多元线性回归模型中,因为决定系数随解释变量数目的增加而增大(或至
41、少不变),所以不能利用决定系数进行解释变量数目不同的模型的拟合优度的比较。同时,若以决定系数度量模型的拟合优度,还会造成通过增加解释变量数目提高模型拟合优度的倾向,而事实上,解释变量的数目并非越多越好,若增加的解释变量不是被解释变量的重要影响因素,甚至是被解释变量的不相关因素,反而会对模型产生负面影响。正是由于存在这样的缺陷,决定系数在多元线性回归模型拟合优度评价方面的作用受到了很大的限制。克服决定系数的上述缺陷的方法,是对决定系数进行适当的调整,得到调整的决定系数。调整的决定系数与F统计量存在下列关系:或 4t检验、F检验的关系如何解答 变量显著性检验(t检验)是针对单个解释变量对被解释变量
42、的影响是否显著所作的检验,检验被检验变量的参数为0是否显著成立;方程显著性检验(F检验)是针对所有解释变量对被解释变量的联合影响是否显著所作的检验,检验被解释变量与解释变量之间的线性关系在总体上是否显著成立。5对于多元线性回归模型(1)求参数的普通最小二乘估计量。(2)对于该模型,参数的普通最小二乘估计量是否依然满足线性性、无偏性、有效性(3)对于该模型,是否依然有 解答 (1)(2)依然满足线性性、无偏性、有效性(3)依然有 6证明,在显著性水平下,当时,的置信度为的置信区间不包括0。解答 在显著性水平下,当时,即 或 或 而在的置信度下,的置信区间是:当时, 的置信区间的下限大于0;当时,
43、 的置信区间的上限小于0;的置信度为的置信区间不包括0。7为研究某地家庭书刊消费与家庭收入、户主受教育程度之间的关系,建立了家庭书刊年消费支出Y(元)、家庭月平均收入(元)、户主受教育年数(年)的模型,用抽样得到的35个家庭的数据估计得(1)从经济意义上考察模型的合理性。(2)在5%的显著性水平上,进行变量显著性检验。(3)在5%的显著性水平上,进行方程总体显著性检验。解答 (1)家庭月平均收入越高,家庭书刊年消费支出相应会增加,但不会有收入增加的那么快,所以家庭月平均收入的系数应大于0,小于1;户主受教育年数越多,那么对文化产品的需求也会越多,家庭书刊年消费支出相应会增加,所以其系数大于0。
44、从经济意义上看,模型参数是比较合理的。(2)在5%的显著性水平上,查表得显然,两估计参数计算的t值大于临界值,拒绝它们各自为零的原假设,两变量显著。(3)在5%的显著性水平上,自由度为(2,32)的F分布的临界值为,计算的F值大于该临界值,所以拒绝原假设,方程总体显著。8(注意:本题数据有误,需修改,回归平方和、总平方和调换了位置)一个二元线性回归模型的回归结果如表3-5所示。表3-5 回归分析结果方差来源平方和自由度来自回归来自残差来自总离差170582678332(1)求样本容量n,残差平方和RSS,回归平方和ESS的自由度,残差平方和RSS的自由度。(2)求决定系数和调整的决定系数。(3
45、)根据以上信息,在给定显著性水平下,可否检验两个解释变量对被解释变量的联合影响是否显著为什么(4)根据以上信息,在给定显著性水平下,可否检验两个解释变量各自对被解释变量的影响是否显著为什么解答 (1)总离差平方和的自由度为n-1,所以样本容量为33。因为回归平方和的自由度为解释变量个数,所以为2。残差平方和的自由度为n-k-1=30。(2) (3)因为联合检验的F统计量为:根据以上信息,在给定显著性水平下,可检验两个解释变量对被解释变量的联合影响是否显著。(4)不能。由于无法计算参数的t值。9(注意:本题的CES生产函数有误,其中的改为)某地1981-2005年国内生产总值Y、生产资金K、从业
46、人数L的统计数据如表3-6所示。表3-6 某地19812005年的国内生产总值及相关数据年份GDP(亿元)时间变量生产资金(亿元)从业人数(万人)年份GDP(亿元)时间变量生产资金(亿元)从业人数(万人)198119821983198419851986198719881989199019911992199312345678910111213199419951996199719981999200020012002200320042005200614151617181920212223242526(1)估计CD生产函数(2)估计线性化后的CES生产函数推算各个参数的估计值。其中,各个参数的含义为:
47、基期技术水平;技术进步率;t为时间变量;劳动的贡献份额;资本的贡献份额;规模效益参数;分布系数,反映劳动要素的密集程度,;替代参数,。解答(1)CD生产函数两边取对数,可得:估计结果为:Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) T * ln(L) ln(K) *Signif. codes: 0 * * * . 1 Residual standard error: on 22 degrees of freedomMultiple R-squared: , Adjusted R-squared: F-stat
48、istic: 2774 on 3 and 22 DF, p-value: < 于是,取对数后的CD生产函数的样本回归方程为:据此可进一步求得原模型中的参数原模型的估计结果为(2)估计线性化后的CES生产函数EViews估计结果为:Dependent Variable: LOG(Y)Method: Least SquaresDate: 10/23/08 Time: 23:26Sample: 1981 2006Included observations: 26VariableCoefficientStd. Errort-StatisticProb. CTLOG(L)LOG(K)LOG(K/L
49、)*LOG(K/L)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)可见为此(注:存在多重共线性问题,所以参数估计结果的经济意义不合理)10某商品的需求函数为其中,Y为需求量,X1为消费者收入,X2为该商品价格。(1)解释参数的经济意义。(2)若价格上涨1
50、0%将导致需求如何变化(3)在价格上涨10%情况下,收入增加多少才能保持需求不变。(4)解释模型中各个统计量的含义。解答(1)由样本方程的形式可知,X1的参数为此商品的收入弹性,表示X2的参数为此商品的价格弹性。(2)由弹性的定义知,如果其它条件不变,价格上涨10%,那么对此商品的需求量将下降%。(3)根据同比例关系,在价格上涨10%情况下,为了保持需求不变,收入需要增加×= ,即%。(4)第一行括弧里的数据、是参数估计量的样本标准差,第二行括弧里的数据、是变量显著性检验的t值,t值较大,说明收入和价格对需求的影响显著.分别是决定系数、调整的决定系数、方程显著性检验的F值,这三个统计
51、量的取值较大,说明模型的总体拟合效果较好。11表3-5给出了19601982年7个OECD国家的能源需求指数Y、实际GDP指数X1、能源价格指数X2,所有价格指数均以1973年为基准(1973年为100)。表3-7 1960-1982年7个OECD国家的能源需求指数及相关数据年份能源需求指数实际GDP指数能源价格指数年份能源需求指数实际GDP指数能源价格指数19601961196219631964196519661967196819691970197119721973197419751876187719781979198019811982资料来源:Organization for Econom
52、ic Co-operation and Development(1)建立能源需求的对数函数模型,解释各回归系数的意义,用P值检验各解释变量是否显著、方程是否显著。(2)建立能源需求的线性函数模型,解释各回归系数的意义,用P值检验各解释变量是否显著、方程是否显著。(3)比较所建立的两个模型,如果两个模型的结论不同,你将选择哪个模型为什么根据你选定的模型,估计实际GDP指数为、能源价格指数为时能源需求指数的数值,构造该估计值的95%的置信区间。解答(1)根据题意,建立能源需求的对数函数模型,回归结果如下:Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国卷绕绣品市场调查研究报告
- 创新医疗设备在职业教育中的培训方法
- 2025年中国化学纤维并纱线数据监测报告
- 人工智能医疗的区块链技术解决方案
- 中医药在医养结合服务中的应用探讨
- 企业健康管理与医疗大数据的关联性
- 2025年中国仿绒皮休闲鞋数据监测研究报告
- 2025年超细碳化钨粉及超细晶粒硬质合金项目合作计划书
- 2025公司、项目部、各个班组安全培训考试试题及参考答案【培优A卷】
- 2025年厂里厂里安全培训考试试题完整版
- 2025年中国光伏电池市场发展现状调研及投资趋势前景分析报告
- 2025年元宇宙+游戏行业新兴热点、发展方向、市场空间调研报告
- 问题等于机会的培训
- 森林管护员面试题及答案
- 培训课件:混凝土结构的施工技术(浇筑、养护)
- 人教版 七年级英语下册 第二学期 期中综合测试卷(2025年春)
- “中华传统文化经典研习”任务群下先秦诸子散文教学策略研究
- 2025年高考语文模拟作文导写及点评:社会时钟
- 《护理信息系统》课件
- 《疥疮的防治及治疗》课件
- 施工现场平面布置与临时设施、临时道路布置方案
评论
0/150
提交评论