高中物理二轮专题——弹簧模型(解析版_第1页
高中物理二轮专题——弹簧模型(解析版_第2页
高中物理二轮专题——弹簧模型(解析版_第3页
高中物理二轮专题——弹簧模型(解析版_第4页
高中物理二轮专题——弹簧模型(解析版_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上高中物理第二轮专题弹簧模型高考分析: 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起

2、足够重视. 弹簧类命题突破要点: 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转

3、化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(kx22-kx12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少.弹性势能的公式Ep=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧的弹性势能,只可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹一端受力为,另一端受力

4、一定也为。若是弹簧秤,则弹簧秤示数等于弹簧自由端拉力的大小.【例1】如图所示,一个弹簧秤放在光滑的水平面上,外壳质量不能忽略,弹簧及挂钩质量不计,施加水平方向的力、,且,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: ,即仅以轻质弹簧为研究对象,则弹簧两端的受力都,所以弹簧秤的读数为.说明:作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】 二、质量不可忽略的弹簧【例2】如图所示,一质量为、长为的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析

5、】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度,取弹簧左部任意长度为研究对象,设其质量为得弹簧上的弹力为:【答案】三、弹簧长度的变化问题(胡克定律的理解与应用)【例3】如图所示,劲度系数为的轻质弹簧两端分别与质量为、的物块1、2拴接,劲度系数为的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧长度的增加量就是物块2的高度增加量,弹簧长度的增加量与弹簧长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知

6、,弹簧的弹力将由原来的压力变为0,弹簧的弹力将由原来的压力变为拉力,弹力的改变量也为 .所以、弹簧的伸长量分别为:和故物块2的重力势能增加了,物块1的重力势能增加了【答案】 四、与物体平衡相关的弹簧问题 【例4】如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30o,弹簧C水平,则弹簧A、C的伸长量之比为A B. C. 1:2 D. 2:1【解析】将两小球看做一个整体,对整体受力分析,可知整体受到重力、A、C的拉力共3个力的作用,由于弹簧处于平衡状态,将轻弹簧A的拉力沿竖直方向和水平方向分解可知水平方向上满足,故,又三个弹簧的劲度系数

7、相同,据胡克定律可知弹簧A、C的伸长量之比为2:1。【答案】D练习:如图所示,在水平板左端有一固定挡板,挡板上连接一轻质弹簧。紧贴弹簧放一质量为m的滑块,此时弹簧处于自然长度。已知滑块与挡板的动摩擦因数及最大静摩擦因数均为。现将板的右端缓慢抬起使板与水平面间的夹角为,最后直到板竖直,此过程中弹簧弹力的大小F随夹角的变化关系可能是图中的( )【解析】选取滑块为研究对象,其肯定受到竖直向下的重力mg、垂直斜面向上的支持力N(大小为mgcos)和沿斜面向上的摩擦力f的作用,可能还会受到沿斜面向上的弹簧弹力F的作用,当较小,即mgsinmgcos时,弹簧弹力F=0,代入数据可得此时/6,据此可排除选项

8、AB;当mgsinmgcos,即/6时,F0,根据平衡条件可得F=mgsin-mgcos,当=/3时,F=mgmg,所以选项C正确,D错误。本题答案为C。五、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例5】如图所示,质量为的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为,已知弹簧对质点的作用力均为,则弹簧对质点作用力的大小可能为 ( )A、 B、 C、 D、【解析】 由于两弹簧间的夹角均为,弹簧对质点作用力的合力仍为,弹簧对质点有可能是拉力,也有可能是推力,因与的大小关系不确定,故上述四个选项均有可

9、能.正确答案:ABCD六、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例6】 如图所示,两个劲度系数分别为的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为的物体后滑轮下降,求滑轮静止后重物下降的距离.【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均,可得两弹簧的伸长量分别为,两弹簧伸长量之和,故重物下降的高度为: 七、与动力学相关的弹簧问题

10、 【例7】如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( ) A.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下 参考答案:C (试分析小球在最低点的加速度与重力加速度的大小关系)练习1:如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ( )A.物体从A到B速度越来越大,

11、从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C练习2:如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。物体向右运动至C点而静止,AC距离为L。第二次将物体与弹簧相连,仍将它压缩至A点,则第二次物体在停止运动前经过的总路程s可能为:A.s=L B.s>L C.s<L D.条件不足,无法判断参考答案:AC(建议从能量的角度、物块运动的情况考虑)练习3: 如图,一倾角为的斜面固定在水平地面上,一质量为有小球与

12、弹簧测力计相连在一木板的端点处,且将整个装置置于斜面上,设木板与斜面的动摩擦因数为,现将木板以一定的初速度释放,小球与木板之间的摩擦不计,则( )A如果,则测力计示数也为零B如果,则测力计示数大于C如果,则测力计示数等于D无论取何值,测力计示数都不能确定【解析】本例是将弹簧模型迁移到斜面上,而且设置了木板与斜面之间的动摩擦因数不同来判断测力计的示数的变化。依题意可知,当时,测力计示数为零;当时,球与木板的加速度为,隔离分析小球就可知道B答案正确;同理可分析C答案正确,从而选择A、B、C答案。【点评】本例是动力学在弹簧模型中的应用,求解的关键是分析整体的加速度,然后分析小球的受力来确定测力计示数

13、的大小。 练习4:如图所示,劲度数为的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为的物体接触(未连接),弹簧水平且无形变。用水平力F缓慢推动物体,在弹性限度内弹簧长度被压缩了,此时物体静止。撤去F后,物体开始向左运动,运动的最大距离为4。物体与水平面间的动摩擦因数为,重力加速度为。则A撤去F后,物体先做匀加速运动,再做匀减速运动B撤去F后,物体刚运动时的加速度大小为 C物体做匀减速运动的时间为D物体开始抽左运动到速度最大的过程中克服摩擦力做的功为 答案【BD】思维发散:若F为恒力,从弹簧原长处压缩弹簧,分析以后的运动情况。并和例5相对比。八、弹簧弹力瞬时问题(弹簧的弹力不能突变)弹簧(尤

14、其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例8】如图所示,木块与用轻弹簧相连,竖直放在木块上,三者静置于地面,的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块的瞬时,木块和的加速度分别是= 与= 【解析】由题意可设的质量分别为,以木块为研究对象,抽出木块前,木块受到重力和弹力一对平衡力,抽出木块的瞬时,木块受到重力和弹力的大小和方向均不变,故木块的瞬时加速度为0.以木块为研究对象,由平衡条件

15、可知,木块对木块的作用力.以木块为研究对象,木块受到重力、弹力和三力平衡,抽出木块的瞬时,木块受到重力和弹力的大小和方向均不变,瞬时变为0,故木块的瞬时合外力为,竖直向下,瞬时加速度为.【答案】0 ,说明:区别于不可伸长的轻质绳中张力瞬间可以突变.九、与弹簧相关的图像问题【例9】一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,弹力与形变量的关系如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案: F=kx F=kx k1=100N/m k2=200N/m)练习1:一个实验小组在“探究弹力和弹簧伸长量的关系”的实验中,使用两条不同

16、的轻质弹簧a和b,得到弹力与弹簧长度的关系图象如图8所示下列表述正确的是 ()Aa的原长比b的长 Ba的劲度系数比b的大Ca的劲度系数比b的小 D测得的弹力与弹簧的长度成正比答案:B练习2:某同学在做“探究弹力和弹簧伸长的关系”的实验时,他先把弹簧平放在桌面上,使其自然伸长,用直尺测出弹簧的原长L0,再把弹簧竖直悬挂起来,挂上钩码后测出弹簧伸长后的长度L,把LL0作为弹簧的伸长量x,这样操作,由于弹簧自身重力的影响,最后得出的图线,可能是图中的() 答案:C十、弹簧形变量可以代表物体的位移 弹簧弹力满足胡克定律,其中为弹簧的形变量,两端与物体相连时亦即物体的位移,因此弹簧可以与运动学知识结合起

17、来编成习题.【例10】如图所示,在倾角为的光滑斜面上有两个用轻质弹簧相连接的物块,其质量分别为,弹簧的劲度系数为,为一固定挡板,系统处于静止状态,现开始用一恒力沿斜面方向拉使之向上运动,求刚要离开时的加速度和从开始到此时的位移(重力加速度为).【解析】 系统静止时,设弹簧压缩量为,弹簧弹力为,分析受力可知:解得:在恒力作用下物体向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体刚要离开挡板时弹簧的伸长量为,分析物体的受力有:,解得设此时物体的加速度为,由牛顿第二定律有: 解得:因物体与弹簧连在一起,弹簧长度的改变量代表物体的位移,故有,即 十一与弹簧相关的临界问题 通过弹簧相联系的物体,在运动

18、过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论. 提示:两物体分离之前加速度与速度均相同,刚分离时二者之间弹力为零。【例11】如图所示,两木块叠放在竖直轻弹簧上,已知木块的质量分别为和,弹簧的劲度系数,若在上作用一个竖直向上的力,使由静止开始以的加速度竖直向上做匀加速运动()求: (1) 使木块竖直做匀加速运动的过程中,力的最大值; (2)若木块由静止开始做匀加速运动,直到分离的过程中,弹簧的弹性势能减少了,求这一过程中对木块做的功.【解析】 此题难点在于能否确

19、定两物体分离的临界点.当(即不加竖直向上力)时,设木块叠放在弹簧上处于平衡时弹簧的压缩量为,有: ,即 对木块施加力,、受力如图3-7-10所示,对木块有: 对木块有: 可知,当时,木块加速度相同,由式知欲使木块匀加速运动,随减小增大,当时, 取得了最大值,即: 又当时,开始分离,由式知,弹簧压缩量,则木块、的共同速度: 由题知,此过程弹性势能减少了设力所做的功为,对这一过程应用功能原理,得: 联立式,且,得:练习1:如图所示,轻弹簧上端固定,下端连接一质量为的重物,先由托盘托住,使弹簧比自然长度缩短L,然后由静止开始以加速度匀加速向下运动。已知,弹簧劲度系数为,求经过多少时间托盘M将与分开?

20、【解析】当托盘与重物分离的瞬间,托盘与重物虽接触但无相互作用力,此时重物只受到重力和弹簧的作用力,在这两个力的作用下,当重物的加速度也为时,重物与托盘恰好分离。由于,故此时弹簧必为伸长状态,然后由牛顿第二定律和运动学公式求解:根据牛顿第二定律得: 由得: 由运动学公式有:联立式有:解得【点评】本题属于牛顿运动定律中的临界状态问题。求解本类题型的关键是找出临界条件,同时还要能从宏观上把握其运动过程,分析出分离瞬间弹簧的状态。我们还可这样探索:若将此题条件改为,情况又如何呢?练习2: 一弹簧秤的秤盘质量m1=1.5kg,盘内放一质量为m2=10.5kg的物体P,弹簧质量不计,其劲度系数为k=800

21、N/m,系统处于静止状态,如图2所示。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2s内F是变化的,在0.2s后是恒定的,求F的最大值和最小值各是多少?(g=10m/s2)F解析 因为在t=0.2s内F是变力,在t=0.2s以后F是恒力,所以在t=0.2s时,P离开秤盘。此时P受到盘的支持力为零,由于盘的质量m1=1.5kg,所以此时弹簧不能处于原长。设在00.2s这段时间内P向上运动的距离为x,对物体P受力分析,根据牛顿第二定律可得: F+FN-m2g=m2a,对于盘和物体P整体应用牛顿第二定律可得:,令FN=0,并由上述二式求得,而,所以求得a=6m/s

22、2,当P开始运动时拉力最小,此时对盘和物体P整体有Fmin=(m1+m2)a=72N,当P与盘分离时拉力F最大,Fmax=m2(a+g)=168N。点评 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。十二、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,弹簧在相对原长相等形变量时所具有的弹性势能相等一般是考试热点.弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力

23、做功,一般可以用以下四种方法求解:(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算;(2)利用图线所包围的面积大小求解;(3)用微元法计算每一小段位移做功,再累加求和;(4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.【例12】如图所示,挡板固定在足够高的水平桌面上,物块和大小可忽略,它们分别带有和的电荷量,质量分别为和.两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨

24、过滑轮,一端与连接,另一端连接轻质小钩.整个装置处于场强为、方向水平向左的匀强电场中,、开始时静止,已知弹簧的劲度系数为,不计一切摩擦及、间的库仑力, 、所带电荷量保持不变,不会碰到滑轮. (1)若在小钩上挂质量为的物块并由静止释放,可使物块对挡板的压力恰为零,但不会离开,求物块下降的最大距离.(2)若的质量为,则当刚离开挡板时, 的速度多大?【解析】 通过物理过程的分析可知,当物块刚离开挡板时,弹力恰好与所受电场力平衡,弹簧伸长量一定,前后两次改变物块质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为,由平衡条件,可得 设当刚离开挡板时弹簧的伸长量为,由,可得: 故下降的最大距离为: 由三式可得: (2)由能量守恒定律可知,物块下落过程中,重力势能的减少量等于物块电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.当的质量为时,有: 当的质量为时,设刚离开挡板时的速度为,则有: 由三式可得刚离开时的速度为: 练习1:图示为某探究活动小组设计的节能运动系统。斜面轨道倾角为30°,质量为M的木箱与轨道的动摩擦因数为。木箱在轨道顶端时,自动装货装置将质量为m的货物装入

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论