![2019学年高一数学必修一课时作业:第2章2.22.2.2第1课时对数函数的图象及性质(人教A版含解析)_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-5/5/277626a2-88ef-420e-89b3-c01173a4cfde/277626a2-88ef-420e-89b3-c01173a4cfde1.gif)
![2019学年高一数学必修一课时作业:第2章2.22.2.2第1课时对数函数的图象及性质(人教A版含解析)_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-5/5/277626a2-88ef-420e-89b3-c01173a4cfde/277626a2-88ef-420e-89b3-c01173a4cfde2.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课时作业A 组基础巩固11.已知函数 f(x)= 的定义域为 M , g(x) = ln(1 + x)的定义域为 N,则 MnN 等V1- x于()A . xX 1B.xX1C. x 1x1D . ?解析:由题意得 M = x|x 1, 则 MnN=x|1vXV1.答案:C2.函数 y= 2+ log2x(x 1)的值域为()A.(2,+x)B.( x,2)C.2, +x)D.3, +x)解析:Iy= log2x 在1, +x)是增函数,.当 x 1 时,log2xIog21 = 0, y= 2+ log2x 2.答案:C3.与函数 y= 4x的图象关于直线 y= x 对称的函数是()A .
2、y = 4xB.y= 4xC. y= log1xD. y= log4X4解析:y= ax与 y= logax 互为反函数,图象关于 y= x 对称.答案:C4.若函数 f(x) = ax+loga(x+ 1)在0,1上的最大值和最小值之和为a,贝 U 函数 g(x)=ax1 2+ x+ 1 在2,2上的值域为()1 11C. 2, 3D . 0,3解析:显然函数 f(x)= ax+ loga(x+ 1)在0,1上是单调的,函数 f(x)在0,1上的最1大值和最小值之和为 f(0) + f(1) = 1 + a+ Ioga2 = a,解得 a=勺A .【2 5B. 2, 5212 g(x) =
3、2x2+ x+ 1 在-2,- 1上单调递减,在1,2上单调递增. g(x)= 2x2+ x+ 1 在2,2上的值域为 g,5故选 A.答案:A5.函数 f(x)= 1 + log2X 与 g(x)= 21x在同一直角坐标系下的图象大致是()解析:由对数函数 y= log2X 过定点(1,0)可知,函数 f(x)= 1 + log2X 的图象过定点(1,1), 且是单调递增的.同理,函数 g(x)二 21x的图象过定点(1,1),并且是单调递减的.观 察函数图象可得选项 C 满足条件.答案:C1g x, x0,6.设 f(x)“x_十 则 f(f( 2)二.JO,x0,f(102) = lg
4、102二一 2lg 10= 2,所以 f(f( 2) = 2.答案:27._ 对数函数 f(x)的图象过点(3, 2),则 f(3) =_ .解析:设 f(x)= logax,则 loga3= 2,二 a2= 3,1吐飞,:f(x)= loglog x x ,二 f( . 3)=log13= 1.0 xv2解析:(1 )由 x+ 10,得 x- 1x+1 工 1XM0函数的定义域为(1,0)U(0,2). Vx2+2x+3=(x+1)2+22,定义域为 R. f(x)0解析:由题意,得*,9 3a + K 010所以 ag.故实数 a 的取值范围为 l1,+xJ2 2一由题意,得 x + ax
5、+ 10 在 R 上恒成立,则 二 a 40,解得2a2. 故实数 a的取值范围为(一 2,2).B 组能力提升1函数 f(x)= logaxi+ 1(0a0 时,f(x) = logax+ 1,其图象可以看作 f(x) = logaX 的图象向上平移一个 单位而得到的,又因 f(x)= loga凶+ 1(0a1)是偶函数,所以 x0 时的图象关于 y 轴对称.答案:A|lg x|,Ovx10.则 abc 的取值范围是(A. (1,10)D. (20,24)解析:设 abc,由 f(a)= f(b)= f(c) 得 |lg a 匸 |lg b|.ta、b、c 互不相等,. Ig a= Ig b
6、.ab= 1. 10c12,i10abc 0,即 4k(k 1) 0, k 1或 k 1 或 k 0,m+1 工 1,m= 2 或 m= 1,m 1,m 0.i m= 2, f(x) = lOg3X, f(27) = Iog327= 3.1i26.设 x0, y0,且 x+ 2y=,求函数 u = Iog2(8xy+ 4y + 1)的最大值与最小值.1 1解析:x+ 2y=2,- 2y=十x,x)+3X3+x+4=-4x-6)+3,又xo,1111y0, x+ 2y=,-十x=2y 0, 即卩 xq,- 0= x当 x= 6 时,P 取到最大值扌扌;当 x=舟舟时,p 取到最小值 1.又 y= lo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机电设备销售员工工作总结
- 2025-2030全球无线智能振动监测传感器行业调研及趋势分析报告
- 2025-2030全球FinFET 3D晶体管行业调研及趋势分析报告
- 2025-2030全球无人潜水器用于海上石油和天然气行业行业调研及趋势分析报告
- 2025-2030全球手机支付安全行业调研及趋势分析报告
- 2025年全球及中国纳米粒度及Zeta电位分析仪行业头部企业市场占有率及排名调研报告
- 2025-2030全球高效粘泥剥离剂行业调研及趋势分析报告
- 2025区域代理合同模板范本
- 供水工程承包合同
- 音响设备购销合同范本
- 输变电工程监督检查标准化清单-质监站检查
- 2024-2025学年北京海淀区高二(上)期末生物试卷(含答案)
- 【超星学习通】马克思主义基本原理(南开大学)尔雅章节测试网课答案
- 2024年中国工业涂料行业发展现状、市场前景、投资方向分析报告(智研咨询发布)
- 化工企业重大事故隐患判定标准培训考试卷(后附答案)
- 工伤赔偿授权委托书范例
- 食堂餐具炊具供货服务方案
- 员工安全健康手册
- 2024化工园区危险品运输车辆停车场建设规范
- 自然科学基础(小学教育专业)全套教学课件
- 华为客服制度
评论
0/150
提交评论