版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2020年湘西州中考数学试卷、选择题(共10小题)1 .下列各数中,比-2小的数是()D.392700亿元,用科学记数A.0B.-1C.-32 .2019年中国与“一带一路”沿线国家货物贸易进出口总额达到法表示92700是()D.927X102A.0.927X105B.9.27X104C.92.7X1033 .下列运算正确的是(A.J(2)2=2C.同狂迷B.(x-y)2=x2-y2D.(-3a)2=9a24.如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()从正面看主视方向5.从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能
2、够组成三角形的概率为(D.6,已知/AOB,作/AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆、,一1”一一,、八八一、心,大于万OC的长为半径回弧,两弧相交于E,F.回直线EF,分别交OA于D,交OB于G.那么ODG-一定是()A.锐角三角形B,钝角三角形C.等腰三角形D.直角三角形7 .已知正比例函数y1的图象与反比例函数y2的图象相交于点A(-2,4),下列说法正确的是()A.正比例函数y1的解析式是y1=2x8 .两个函数图象的另一交点坐标为(4,-2)C.正比例函数yi与反比例函数y2都随x的增大而增大D.当xv2或0vxv2时,y2yi8.如图,PA、PB为圆O的切
3、线,切点分别为圆O于点D.下列结论不一定成立的是(A、B,PO交AB于点C,PO的延长线交)B. AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为BPA的边AB上的中线9.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另AB=a,BC=b,/DAO=x,则点C至ijx轴一个顶点D在y轴的正半轴上,矩形的边A.acosx+bsinxC. asinx+bcosx10.已知二次函数y=ax2+bx+c图象的对称轴为 abc>0, b-2av0, a-b+c>0, a+b>n(an+b),B.acosx+bcosxD.asinx+bsi
4、nxx=1,其图象如图所示,现有下列结论:(nw1),2cv3b.正确的是(A.B.C,D.、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)的绝对值是12 .分解因式:2x2-2=13 .若一个多边形的内角和是外角和的两倍,则该多边形的边数是14,不等式组,3产的解集为.、工度.15 .如图,直线AE/BC,BAXAC,若/ABC=54°,则/EAC=16 .从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得
5、到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是三甲=7.5,W乙=7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是17 .在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,/ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE沿x轴向右平移,当矩形CODE与ABO重叠部分的面积为6短时,则矩形CODE向右平移的距离为.oD18.观察下列结论:B(1)如图,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,/NOC=60°(2)如图2,在
6、正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,/NOD=90°(3)如图,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,/NOE=108°即点根据以上规律,在正n边形Aa2A3A4An中,对相邻的三边实施同样的操作过程,M,N是A1A2,A2A3上的点,且AiM=A2N,AiN与AnM相交于O.也会有类似的结论,三、解答题(本大题关8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、你的结论是解答或证明的主要步骤)19.化简:(a1)+计算:2cos45°+(兀2020)0+|2灰|.20.21.
7、如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BAECDE;(2)求/AEB的度数.E22 .为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:50Wxv60,60<x<70,70a.七年级参赛学生成绩频数分布直方图(数据分成五组:<x<80,80<x<90,90<x<100)如图所示b.七年级参赛学生成绩在70<xV80这一组的具体得分是:7071737
8、576767677777879c.七年级参赛学生成绩的平均数、中位数、众数如下:年级平均数中位数众数76.980d.七年级参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:在这次测试中,七年级在75分以上(含75分)的有表中m的值为(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第名;(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.频数1511S1月底因突然爆发新冠肺炎疫2月份起扩大产能,3月份23 .某口罩生产厂生产的口罩1月份平均日产量为20000个,情,市场对口罩需求量大增,为满足市场需求.工厂决定从平均日产量达到2
9、4200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?24 .如图,AB是。的直径,AC是。的切线,BC交。O于点E.(1)若D为AC的中点,证明:DE是。O的切线;(2)若CA=6,CE=3.6,求。O的半径OA的长.25 .问题背景:如图1,在四边形ABCD中,/BAD=90°,/BCD=90°,BA=BC,/ABC=120°,/MBN=60°,/MBN绕B点旋转,它的两边分别交AD>DCTE>F.究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC至ijG,使CG=AE
10、,连接BG,先证明BCG0BAE,再证明BFGABFE,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD中,ZBAD=90°,/BCD=90°,BA=BC,/ABC=2ZMBN,/MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,/BAD+/BCD=180°,ZABC=2/MBN,/MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指
11、挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70。的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50。的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.图1曲Si图426 .已知直线y=kx-2与抛物线y=x2-bx+c(b,c为常数,b>0)的一个交点为A(-1,0),点M(m,0)是x轴正半轴上的动点.(1)当直线y=kx-2与抛物线y=x2-bx+c(b,c为常数,b
12、>0)的另一个交点为该抛物线的顶点E时,求k,b,c的值及抛物线顶点E的坐标;(2)在(1)的条件下,设该抛物线与y轴的交点为C,若点Q在抛物线上,且点Q的横坐标为b,当S»AEQM=Saace时,求m的值;(3)点D在抛物线上,且点D的横坐标为当在AM+2DM的最小值为时,求b的值.、选择题(本大题共10小题,每小题4分,共40分.请将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)1 .下列各数中,比-2小的数是(A. 0B. 一1C. -3D. 3【分析】利用数轴表示这些数,从而比较大小.解:将这些数在数轴上表示出来:-3-2-10-3<-2<
13、;-K0V3,,比一2小的数是-3,故选:C.92700亿元,用科学记数2 .2019年中国与“一带一路”沿线国家货物贸易进出口总额达到法表示92700是()A. 0.927X105B. 9.27X104C. 92.7X103D. 927X102【分析】科学记数法的表示形式为ax10n的形式,其中1W|a|v10,n为整数.解:92700=9.27X104.3.下列运算正确的是(A.q(-2)2B.(x-y)2=x2-y2D.(-3a)2=9a2【分析】根据二次根式的加减法、骞的乘方与积的乘方、完全平方公式、二次根式的性质与化简,进行计算即可判断.解:A.=2,所以A选项错误;B.(x-y)2
14、=x2-2xy+y2,所以B选项错误;cY+qHwJ亏,所以C选项错误;D.(-3a)2=9a2.所以D选项正确.4 .如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()从正面看主视方向,二B±CF。二-【分析】根据从上边看得到的图形是俯视图,可得答案.解:从上边看有两层,底层右边是一个小正方形,上层是两个小正方形,故选:C.5 .从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为()AID133A.工B.C.5Dy【分析】列举出所有可能出现的结果情况,进而求出能构成三角形的概率.解:从长度为1cm
15、、3cm、5cm、6cm四条线段中随机取出三条,共有以下4种结果(不分先后):1cm3cm5cm,1cm3cm6cm,3cm5cm6cm,1cm5cm6cm,其中,能构成三角形的只有1种,6 .已知/AOB,作/AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于UOC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么ODG-一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【分析】依据已知条件即可得到/ODE=/OGE,即可得到OD=OG,进而得出ODG是等腰三角形.解:如图所示,:OM平分/AOB, ./AOC=ZBOC,由题可
16、得,DG垂直平分OC, ./OED=ZOEG=90°, ./ODE=ZOGE,.OD=OG,.ODG是等腰三角形,7 .已知正比例函数yi的图象与反比例函数y2的图象相交于点A(-2,4),下列说法正确的是()A.正比例函数yi的解析式是yi=2x8 .两个函数图象的另一交点坐标为(4,-2)C.正比例函数yi与反比例函数y2都随x的增大而增大D.当xv2或0vx<2时,y2Vyi【分析】由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.解:正比例函数yi的图象与反比例函数y2的图象相交于点A(2,-4),,正比例函数yi=-2x,反比仞
17、函数y2=-,2,4),.两个函数图象的另一个交点为(-.A,B选项说法错误; 正比例函数yi=-2x中,y随x的增大而减小,反比例函数y2=-旦x内y随x的增大而增大, .C选项说法错误; .1当xv2或0Vxv2时,y2Vyi,,选项D说法正确.故选:D.8 .如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,A. BPA为等腰三角形B. AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为BPA的边AB上的中线【分析】根据切线的性质即可求出答案.解:(A)PA、PB为圆O的切线,PA=PB, .BPA是等腰三角形,故(B)由圆的对称性可知:故B不一定正确.(
18、C)连接OB、OA, PA、PB为圆O的切线, ./OBP=ZOAP=90°,A正确.ABLPD,但不一定平分,点A、B、P在以OP为直径的圆上,故C正确.(D).BPA是等腰三角形,PDXAB,.PC为BPA的边AB上的中线,故D正确.故选:B.中,在每个象限PO的延长线交圆O于点D.下列结论不一定成立的是()9 .如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,/DAO=x,则点C至ijx轴的距离等于()A.acosx+bsinxB.acosx+bcosxC.asinx+bcosxD.asinx
19、+bsinx【分析】作CEy轴于E,由矩形的性质得出CD=AB=a,AD=BC=b,ZADC=90°,证出/CDE=ZDAO=x,由三角函数定义得出OD=bsinx,DE=acosx,进而得出答案.解:作CEy轴于E,如图: 四边形ABCD是矩形,.-.CD=AB=a,AD=BC=b,/ADC=90°, ./CDE+ZADO=90°, ./AOD=90°, ./DAO+ZADO=90°,.sin/DAO= ./CDE=ZDAO=x,一DE,cos/CDE=Y,OD=ADXsin/DAO=bsinx,DE=Dxcos/CDE=acosx,acos
20、x+bsinx;1.OE=DE+OD=acosx+bsinx,点C至ijx轴的距离等410,已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论: abc>0, b-2av0, ab+c>0, a+b>n(an+b),(片1), 2cv3b.正确的是()A.B.C,D.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;由于a<0,所以-2a>0.又b&g
21、t;0,所以b-2a>0,故此选项错误;当x=-1时,y=a-b+c<0,故此选项错误;当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确;当x=3时函数值小于0,y=9a+3b+cv0,且该抛物线对称轴是直线x=-即a=-且,代入得9(2)+3b+cv0,得2cv3b,故此选项正确;故正确.故选:D.二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)的绝对值是【分析】根据绝对值的意义,求出结果即可.
22、解:根据负数的绝对值等于它的相反数可得,故答案为:12 .分解因式:2x22=2(x+1)(x1)【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.解:2x2-2=2(x21)=2(x+1)(x1).故答案为:2(x+1)2倍则内角和是720°.n13 .若一个多边形的内角和是外角和的两倍,则该多边形的边数是【分析】任何多边形的外角和是360°,内角和等于外角和的边形的内角和是(n-2)?180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解:设该多边形的边数为n,根据题意,得,(n-2)?180°
23、;=720°,解得:n=6.故这个多边形的边数为6.故答案为:614,不等式组的解集为X>-1【分析】求出每个不等式的解集,最后求出不等式组的解集即可.解:.解不等式得:X>-3,解不等式得:x>-1,.不等式组的解集为X>-1,故答案为:X>-1.36度.15.如图,直线AE/BC,BAXAC,若/ABC=54°,则/EAC=C=90【分析】根据垂直的定义得到/BAC=90°,根据三角形的内角和定理得到/-54。=36。,根据平行线的性质即可得到结论.解:BAXAC, ./BAC=90°, ./ABC=54°,
24、./C=90°54°=36 .AEIIBC, ./EAC=ZC=36故答案为:36.16 .从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是二甲=7.5,耳乙=7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是乙.【分析】在平均数基本相等的前提下,方差越小产量越稳定,据此求解可得.解:工甲=.犬乙=7.5,S甲2=0.010,S乙2=0.
25、002,.S甲2>S乙2,,乙玉米种子的产量比较稳定,应该选择的玉米种子是乙,故答案为:乙.17 .在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,/ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE沿x轴向右平移,当矩形CODE与ABO重叠部分的面积为67时,则矩形CODE向右平移的距离为2.斗Ar【分析】由已知得出AD=OA-OD=4,由矩形的性质得出/AED=ZABO=30°,在RtAAED中,AE=2AD=8,由勾股定理得出ED=4/3,作出图形,根据三角形面积公式列出方程即可得出答案.解:点A(
26、6,0),OA=6,.OD=2,.AD=OA-OD=6-2=4,四边形CODE是矩形,DE/OC,./AED=ZABO=30°,在RtAED中,AE=2AD=8,ED=JaE-AD2=V82-4=4?3,.OD=2,.点E的坐标为(2,M);.矩形CODE的面积为473x2=8731,将矩形CODE沿x轴向右平移,矩形CODE与ABO重叠部分的面积为673矩形CODE与ABO不重叠部分白面积为2/3,如图,设ME'=x,则FE'=Vx,依题意有XX日+2=2M,解得x=±2(负值舍去).故矩形CODE向右平移的距离为2.故答案为:2.18.观察下列结论:(1
27、)如图,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,ZNOC=60°(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,/NOD=90°(3)如图,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,/NOE=108°;根据以上规律,在正n边形AiA2A3A4An中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且AiM=A2N,AiN与AnM相交于O.也会有类似的结论,【分析】根据已知所给得到规律,进而可彳#在正n边形A1A2A3A4An中,对
28、相邻的三边实施同样的操作过程会有类似的结论.解:(1)如图,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,/NOD='4-2)乂132_=90。.4(3)如图,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,/NOE=匚口=108。;5根据以上规律,在正n边形AiA2A3A4An中,对相邻的三边实施同样白操作过程,即点M,N是A1A2,A2A3上的点,且AiM=A2N,AiN与AnM相交于O.也有类似的结论是AiN=AnM,故答案为:AiN=AnM,/
29、NOA三、解答题(本大题关8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)I9.计算:2cos45°+(兀2020)°+|2&|.【分析】分别根据特殊角的三角函数值,任何非零数的零次哥定义1以及绝对值的定义计算即可.解:原式=_'22a【分析】先计算括号内分式的减法、将除式分母因式分解,再将除法转化为乘法,最后约分即可得.解:原式=(言蜜+百岳万")17)a-l-2a亘21.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BAECDE;(2)求/AEB的度数.【分析】(1)利用等边三角
30、形的性质得到/AD=AE=DE,/EAD=/EDA=60°,利用正方形的性质得到AB=AD=CD,/BAD=/CDA=90°,所以/EAB=/EDC=150°,然后根据“SAS”判定BAEACDE;(2)先证明AB=AE,然后根据等腰三角形的性质和三角形内角和计算/ABE的度数.【解答】(1)证明:.ADE为等边三角形,AD=AE=DE,ZEAD=ZEDA=60°,丁四边形ABCD为正方形,.AB=AD=CD,/BAD=/CDA=90°,./EAB=ZEDC=150°,在BAE和CDE中rAB=DC*/EAB=/EDC,,蛆EDE.B
31、AEZACDE(SAS);(2),.AB=AD,AD=AE,.AB=AE, ./ABE=ZAEB, ./EAB=150°, ./ABE=(180°150°)=15°.22.为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级参赛学生成绩频数分布直方图(数据分成五组:50wxv60,60wxv70,70<x<80,80<x<90,90WXW100)如图所示70717375
32、76b.七年级参赛学生成绩在70<xv80这一组的具体得分是:767677777879c.七年级参赛学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七76.9m80d.七年级参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:(1)在这次测试中,七年级在75分以上(含75分)的有31人;(2)表中m的值为77.5;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第24名;(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【分析】(1)将频数分布直方图中第3、4、5组数据相加可得答案;(2)根据中位数的定义求解可得
33、;(3)由90wxw100的频数为8、80wxv90的频数为15,据此可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数占被调查人数的比例即可得.解:(1)在这次测试中,七年级在75分以上(含75分)的有8+15+8=31(人),故答案为:31.(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,778_m=Q=77.5,故答案为:77.5;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第24名,故答案为:24;(4)估计七年级成绩超过平均数76.9分的人数为500><4+15+E=270(人).5023
34、.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求.工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?【分析】(1)根据题意设口罩日产量的月平均增长率为x,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为24200个,即可预计4月份平均日产量.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得X1=2(舍去),X2=0.1=10%,答:口罩日产量的月平均增
35、长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.24.如图,AB是。的直径,AC是。的切线,BC交。O于点E.(1)若D为AC的中点,证明:DE是。O的切线;(2)若CA=6,CE=3.6,求。O的半径OA的长.【分析】(1)连接AE,OE,由AB是。的直径,得到/AEB=90°,根据直角三角形的性质得到AD=DE,求得/DAE=/AED,根据切线的性质得到/CAE+/EAO=ZCAB=90°,等量代换得到/DEO=90°,于是得到结论;(2)证明AECsBAC,列比例式可得BC的长,最后根据勾股定理可得OA
36、的长.【解答】(1)证明:连接AE,OE,AB是。O的直径,且E在。O上,AEB=90°, ./AEC=90°, D为AC的中点, .AD=DE, ./DAE=ZAED,.AC是。O的切线, ./CAE+/EAO=/CAB=90°, .OA=OE, ./OAE=ZOEA, ./DEA+ZOEA=90°,即/DEO=90°,DE是。O的切线; 2)解:./AEC=ZCAB=90。,CC=ZC, .AECsBAC,ACEC.一'h-' .CA=6,CE=3.6,63.6.=BC6'BC=10, ./CAB=90°,
37、 .AB2+AC2=BC2,AB=JU】_2=8, .OA=4,即。O的半径OA的长是4.25.问题背景:如图1,在四边形ABCD中,/BAD=90°,/BCD=90°,BA=BC,/ABC=120°,/MBN=60°,/MBN绕B点旋转,它的两边分别交AD>DCTE>F.究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC至ijG,使CG=AE,连接BG,先证明BCG0BAE,再证明BFGABFE,可得出结论,他的结论就是EF=AE+CF;探究延伸1:如图2,在四边形ABCD中,ZBAD=90°,/BCD
38、=90°,BA=BC,/ABC=2ZMBN,ZMBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,/BAD+/BCD=180。,ZABC=2/MBN,/MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70。的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前
39、进,同时舰艇乙沿北偏东50。的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.【分析】问题背景:延长FC至ijG,使CG=AE,连接BG,先证明BCGBAE,再证明BFG叁'BFE,即可得出结论:EF=AE+CF;探究延伸1:延长FC至ijG,使CG=AE,连接BG,先证明BCGABAE,再证明BFGABFE,可得出结论:EF=AE+CF;探究延伸2:延长DC至ijH,使得CH=AE,连接BH,先证明BCHBAE,即可得至UBE=HB,/ABE=/HBC,再证明H
40、BFEBF,即可得出EF=HF=HC+CF=AE+CF;实际应用:连接EF,延长BF交AE的延长线于G,根据题意可转化为如下的数学问题:在四边形GAOB中,OA=OB,/A+/B=180°,/AOB=2/EOF,/EOF的两边分别交AG,BG于E,F,求EF的长.再根据探究延伸2的结论:EF=AE+BF,即可得到两舰艇之间的距离.解:问题背景:如图1,延长FC至ijG,使CG=AE,连接BG,先证明BCGABAE,再证明BFGBFE,可得出结论:EF=AE+CF;图1故答案为:EF=AE+CF;探究延伸1:如图2,延长FC至ijG,使CG=AE,连接BG,先证明BCGABAE,再证明
41、BFG叁、BFE,可得出结论:EF=AE+CF;图2探究延伸2:上述结论仍然成立,即EF=AE+CF,理由:如图3,延长DC至ijH,使得CH=AE,连接BH,图3 .ZBAD+ZBCD=180°,ZBCH+ZBCD=180/BCH=/BAE,.BA=BC,CH=AE, .BCHQBAE(SAS), .BE=HB,/ABE=ZHBC, ./HBE=ZABC,又./ABC=2/MBN,EBF=ZHBF,BF=BF,HBFEBF(SAS),EF=HF=HC+CF=AE+CF;实际应用:如图4,连接EF,延长BF交AE的延长线于G,图4因为舰艇甲在指挥中心(O处)北偏西30。的A处.舰艇乙在指挥中心南偏东70。的B处,所以/AOB=140°,因为指挥中心观测两舰艇视线之间的夹角为70。,所以/EOF=70°,所以/AOB=2/EOF.依题意得,OA=OB,/A=60°,/B=120°,所以/A+ZB=180°,因此本题的实际的应用可转化为如下的数学问题:在四边形GAOB中,OA=OB,/A+/B=180°,ZAOB=2ZEOF,ZEOF的两边分别交AG,BG于E,F,求EF的长.根据探究延伸2的结论可得:EF=AE+BF,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025陕西建筑安全员知识题库及答案
- 2025年重庆市安全员-B证(项目经理)考试题库
- 2025年江西省建筑安全员《A证》考试题库
- 【大学课件】工程伦理
- 【大学课件】工程建设监理概论
- 《答谢中书书》课件1
- 物业客服培训课件
- 单位管理制度展示选集人员管理十篇
- 2025年中国航空货物运输保险行业市场发展现状及投资方向研究报告
- 单位管理制度收录大合集【职员管理篇】
- CJT156-2001 沟槽式管接头
- 张成福《公共管理学》(修订版)课后习题详解
- 全国教师资格笔试考试学习笔记-小学科目一《综合素质》
- 耳穴治疗糖尿病的国际趋势
- 便利店转让简单合同范本
- 脑卒中后吞咽障碍患者进食护理试题及答案
- 中草药产业园规划方案
- 人力资源外包投标方案
- 护理文书书写规范
- MOOC 计量经济学-西南财经大学 中国大学慕课答案
- 无人机测试与评估标准
评论
0/150
提交评论