版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、本章教学目的本章教学目的了解和掌握统计推断中的另一个根本问了解和掌握统计推断中的另一个根本问题:参假设检验及其在经济管理中的运用;题:参假设检验及其在经济管理中的运用;掌握运用掌握运用 Excel 的的“数据分析及其统数据分析及其统计函数功能求解假设检验问题。计函数功能求解假设检验问题。 第第7章章 单个总体的假设检验单个总体的假设检验本章主要内容:本章主要内容:7.1 案例引见 7.2 假设检验的根本原理7.3 单个正态总体均值的检验 7.4 单个正态总体方差的检验本章重点:假设检验中不可防止的两类错误及其运用 Excel“数据分析功能的运用及其运转输出结果分析。难点:假设检验中不可防止的两
2、类错误及其运用。 【案例【案例1】新工艺能否有效?】新工艺能否有效? 某厂消费的一种钢丝的平均抗拉强度为某厂消费的一种钢丝的平均抗拉强度为 10560 (kg/cm2)。 现采用新工艺消费了一种新钢丝,随机抽现采用新工艺消费了一种新钢丝,随机抽取取 10 根,测得抗拉强度为:根,测得抗拉强度为: 10512, 10623, 10668, 10554, 10776 10707, 10557, 10581, 10666, 10670 求得新钢丝的平均抗拉强度为求得新钢丝的平均抗拉强度为 10631.4(kg/cm2)。 能否就可以作出新钢丝的平均抗拉强度高于能否就可以作出新钢丝的平均抗拉强度高于原
3、钢丝,即新工艺有效的结论原钢丝,即新工艺有效的结论? 7.1 案例引见案例引见某台加工缸套外径的机床,正常形状下所加工缸套外径的规范差应不超越 0.02 mm。检验人员从加工的缸套中随机抽取 9 个,测得外径的样本规范差为 S = 0.03 mm。问:该机床的加工精度能否符合要求?【案例【案例2】机床加工精度能否符合要求】机床加工精度能否符合要求?7.2 假设检验的原理假设检验的原理一、实践推断原理假设检验的实际是小概率原理,又称为实践推断原理,其详细内容是:小概率事件在一次实验中是几乎不能够发生的。二、假设检验推理的思想方法假设检验推理的思想方法是某种带有概率性质的反证法。三、根本原理和步骤
4、例1:统计资料阐明,某电子元件的寿命 XN(0 , 2 ),其中 0 知, 2 未知。现采用了新工艺消费,测得新工艺消费的 n 个元件寿命为 x1, x2, , xn。问:新工艺消费的元件期望寿命 能否比原工艺的元件期望寿命 0 有显著提高?此问题要推断的是: 能否 0?这可用假设检验的方法处理,步骤如下: 本例中 H0: = 02. 按希望出现的结果提出一个与原假设对立的假设,称为备择假设,记为 H1。 本例中 H1: 03. 构造一个能用来检验原假设 H0 的统计量本例中,要检验的是总体均值 ,的优良是而 X当 H0 为真时,Xt (n-1) nSXt/0估计, 故应运用来构造检验 的统计
5、量。统计量1.提出一个希望推翻的假设提出一个希望推翻的假设,称为原假设称为原假设,记为记为 H04. 给定一个小概率给定一个小概率 ,称为显著性程度称为显著性程度显著性程度 是当 H0 为真时, 回绝 H0 的概率(即犯“弃真错误的概率)。 也即当检验结果回绝 H0 时,不犯错误的概率为 1-, 从而可以有1- 的可信度接受备择假设 H1。5. 确定要回绝确定要回绝 H0 时统计量的取值范围,时统计量的取值范围,称为回绝域,称为回绝域,回绝域的边境点称为临界值。回绝域的边境点称为临界值。本例中, 由于 H1: 0 而当 H0 为真时,有 P t t ( n-1 ) = 1-可知当统计量 t t
6、(n-1) 时,就可以有1- 的把握断定H0 不真 (犯错误的概率仅为 ), 故此时应回绝 H0。从而回绝域为 t t(n-1), 临界值为 t(n-1)。 (右边检验), t (n-1)0f (x) x右边检验的回绝域本例中,假设计算结果为 t t(n-1),6. 计算统计量计算统计量 t 的值,并作出检验结论的值,并作出检验结论那么回绝 H0,接受 H1, 即在程度 下, 以为 显著高于 0。假设 t t(n-1) | H0 为真= 可知检验中能够出现以下两类判别错误:二二. .检验中能够犯的两类错误检验中能够犯的两类错误第一类错误第一类错误当 H0 为真时回绝 H0 的错误,即“弃真错误
7、,犯此类错误的概率为 。第二类错误第二类错误当 H0 不真时接受 H0 的错误,即“取伪错误, 记犯该类错误的概率为 , 即P tt(n-1)H0 不真= 由于 H0 不真时与 H0 为真时, 统计量 t 的分布是不同的, 故 1-。 H0: 无辜无辜法官判决法官判决假设检验假设检验实践情况实践情况实践情况实践情况判决判决无辜有罪决策决策H0 真H0 假无辜CorrectError没有回绝H01 - Type IIError (b b )有罪ErrorCorrect回绝H0Type IError( )Power(1 - b)Result Possibilities结果的各种能够性结果的各种能够
8、性Relationship Between a & ba & b 间的联络间的联络 b两个错误有反向的关两个错误有反向的关系系由图可知,减少 会增大 ,反之也然。在样本容量 n 不变时,不能够同时减小犯两类错误的概率。应着重控制犯哪类错误的概率,这应由问题的实践背景决议。当第一类错误呵斥的损失大时,就应控制犯第一类错误的概率 (通常取 0.05,0.01等);反之,当第二类错误呵斥的损失大时,就应控制犯第二类错误的概率 。要同时减小须犯两类错误的概率,必需增大样本容量 n。 x0H0:=0t(n-1)H1:=1两类错误的关系两类错误的关系t (n -1) nSXt/0/2/2
9、t/2(n-1)- t/2(n-1)0f (x)x1- 设 XN( , 2 ), 2 未知,X1, X2, , Xn 为总体X 的样本,给定程度 ,原假设为 H0: =0 ( 0为某一给定值)当 H0 为真时,统计量1. H1:0 (双边检验双边检验) 当 H0 为真时,由 P-t/2 (n-1)tt/2 (n-1)=1- 可得: 假设 |t| t/2 (n-1) 就回绝 H0,接受 H1;否那么接受 H0。 7.3 单个总体均值的检验单个总体均值的检验 当 H0 为真时,由 P t t ( n-1) =1-可得:假设 t t ( n-1 ) 就回绝 H0,接受 H1;否那么就以为 并不显著高
10、于 0 。3. H1: 0 (左边检验左边检验) 由由 P t -t (n-1) =1-可得:假设可得:假设 t 0 (右边检验右边检验) 某厂消费的一种钢丝抗拉强度服从均值为10560(kg/cm2)的正态分布,现采用新工艺消费了一种新钢丝,随机抽取10根测得抗拉强度为: 10512, 10623, 10668, 10554, 10776 10707, 10557, 10581, 10666, 10670 问在显著性程度 = 0.05下,新钢丝的平均抗拉强度比原钢丝能否有显著提高? 案例案例1. 检验新工艺的效果检验新工艺的效果案例 1 解答:, 4 .10631xnSxt/0阐明新工艺对提
11、高钢丝绳的抗拉强度是有显著效果的。本案例为右边检验问题,设新钢丝的平均抗拉强度为 , 2 未知,故运用t 检验。由题意,H0: =0,H1: 0由所给样本数据,可求得:S = 81,n =10, =0.05,t0.05(9)=1.8331 t =2.7875 故回绝 H0, 即在程度 =0.05下, 显著高于 0。10/81105604 .106317875. 2 t(n-1) = t0.05(9) =1.8331在案例1中,假设取 = 0.01,问结论如何?【解】 t0.01(9) = 2.8214, t =2.7875 P0 P 25%, 样本比例样本比例 p = 112/400 = 0.
12、28nPPPpZ/ )1 (000400/ )25. 01 (25. 025. 028. 03856. 1326. 201. 0 Z 设 H0: 2 = 02 (02为某一给定值)那么当 H0为真时,统计量 与前面分析完全类似地,可得如下检验方法:2022) 1(Sn 统计量统计量 H1 拒绝域拒绝域 2022) 1(Sn7.5 7.5 单个总体方差的检验单个总体方差的检验) 1(2n 2 02 2 02 2 02 2022) 1(Sn 故回绝 H0,即该机床加工精度已显著下降。 应立刻停工检修,否那么废品率会大大添加。) 1(2n【案例【案例2】 机床加工精度问题机
13、床加工精度问题)8(2050.50715.课堂练习 4 一台奶粉自动包装的包装精度目的为 规范差 = 0.005 (kg) 某天开工时,随机抽检了 10 袋产品,测得其样本规范差为 S = 0.00554 (kg) (1)在程度 = 0.25 下,检验该天包装机的包装精度能否符合要求。 (2)在本检验问题中,为什么要将 获得较大?统计意义上的显著和实践的显著 有时,由于非常大的样本容量,他很有能够会得出统计意义上的显著性但实践中的显著性却很小。比如,假设在全国性的关于高档次的商业电视市场推行活动之前,他知道人们对他的品牌认知度是0.3。在活动终了之后,根据对20,000人的调查显示有6,168人认识他的品牌。单边检验希望能证明如今的认知比例是大于0.3,而p-值结果为0.0047,正确的统计结论是品牌名字消费者的比例如今获得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园宣传片解说词
- 货物运输长期合同(4篇)
- 2024-2025学年第一学期期中南京市六校联合调研试题高一数学
- 黑龙江鸡西市(2024年-2025年小学五年级语文)统编版摸底考试(下学期)试卷及答案
- 2024年轻质高强复合材料项目投资申请报告
- 2024年LED室内应用灯具项目投资申请报告代可行性研究报告
- 标准文本-青贮玉米中酸性洗涤纤维的测定
- 上海市县(2024年-2025年小学五年级语文)人教版综合练习((上下)学期)试卷及答案
- 新学期教师动员培训
- 江西省宜春市宜丰中学2024-2025学年高一上学期期中考试地理试题(含答案)
- 工程交付培训记录表
- 《个别化教育的理论与实践》教学大纲
- 精益道场建设方案与步骤课件
- 对监狱心理矫治工作存在的问题与对策的几点思考
- 廉洁文化进校园班级主题班会
- 一年级拼音每日拼读练习
- 七年级上册生命、生态、安全教案 全册
- 下穿有轨电车专项监测方案
- 古诗句接龙100首
- 大众汽车北美市场案例(ppt-35页)课件
- 坐井观天 (5)
评论
0/150
提交评论