版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、工程测量中的坐标系选择原理与方法摘要摘要:近几年来,国家大力兴建高速铁路,由于高速铁路对边长投影变形的控制要求很高(2.5cm/km),因而导致长期以来一直使用的三度带高斯投影平面之间坐标系已难以满足高速铁路建设的的精度要求,本文就具有抵偿高程投影面的任意带坐标系原理作出了阐释,具有抵偿高程投影面的任意带坐标系,克服了三度带坐标系在大型工程中精度无法满足要求的局限性,能有效地实现两种长度变形的相互抵偿,从而达到控制变形的目的。关键词:高速铁路、抵偿高程面、坐标转换、投影变形、高斯正形投影工程测量中的坐标系选择原理与方法AbstractAbstract:Inrecentyears,countri
2、esbuildhigh-speedrailway,duetohighspeedrailwayprojectivedeformationcontrolofreviseddemanding(2.5cm/km),andthereforecausehaslongbeenusedwiththreedegreesofgaussianprojectionplanesalreadydifficulttosatisfybetweencoordinatesystemofhigh-speedrailwayconstruction,thisarticletheaccuracyrequirementoftheplane
3、swithcounterelevationarbitrarymadeinterpretationwithcoordinatesystem,withtheprincipleofanyplaneswithanti-subsidyelevation,overcomethreedegreescoordinatewithcoordinatesysteminlargeengineeringaccuracycan'tsatisfyrequirementslimitation,caneffectivelyachievethetwolengthdeformationofmutualcounter,ach
4、ievethepurposeofcontrollingdeformation.keywords:rapidtransitrailwayCounterelevationsurfaceCoordinatetransformationProjectivedeformationGaussianfounderformprojectionII工程测量中的坐标系选择原理与方法目录第一章前言错误!未定义书签。第二章工程测量中常用坐标系简介12.1 国家统一的3?高斯正形投影平面直角坐标系统.错误!未定义书签。2.2 抵偿高程面上的高斯正形投影3。带的平面直角坐标系统32.3 任意带高斯正形投影的平面直角坐标系
5、统324具有高程抵偿面的任意带高斯正形投影平面直角坐标系4第三章具有抵偿高程面的任意带高斯正形平面直角坐标系设计原理53.1 高斯正形投影53.2 投影变形及其主要特特征分析632J将参考椭球面上的长度归化至高斯平面63.2.2将参考椭球面上的长度归化至高斯平面73.3 设计原理73.4 工程测量投影面和投影带选择的基本出发点8第四章实例比较与分析9第五章总结10参考文献11致谢12附录12iii工程测量中的坐标系选择原理与方法工程测量中的坐标系选择原理与方法Engineeringmeasurementprincipleandmethodofthecoordinatesystemselecti
6、on第一章前言我国的铁路工程建设,长期以来一直采用国家统一30带高斯正形投影平面直角坐标系(以下简称3°带坐标系)作为铁路线路工程的施工坐标系。随着我国铁路建设主要技术标准的显著提高和勘测工艺的变革,30带坐标系已难以适应铁路工程建设的需要,特别是高速铁路(含200km/h客运专线),对边长投影变形提出了2.5cm/km(1/40000)的控制要求。因此,在高速铁路可行性研究阶段,结合项目特点,设计选定合理的施工坐标系,有效控制投影变形对工程建设的影响,是保证定测、设计、施工的顺利实施和工程质量的重要前提。具有抵偿高程面的任意带高斯正形投影平面直角坐标系(以下简称抵偿高程面任意带坐标
7、系),是一种能够灵活解决投影变形对工程建设的影响且相对复杂的坐标系形式。以下结合对投影变形问题的分析,对具有抵偿高程面任意带坐标系的设计原理及方法进行讨论。工程测量中的坐标系选择原理与方法第二章工程测量中常用坐标系简介2.1、 国家统一的3?高斯正形投影平面直角坐标系统有前面的分析可知,长度元素高程归化改正与高斯投影长度改化计算。通过高程归化改正公式和高斯投影改化公式,可得每千米长度的高程归化改正相对值和边长离中央子午线垂距的长度变形,每千米长度的高程归化改正相对值如表1所示asl/sA/SHm/m1:1000002001:300005001:120001:640003001:20000100
8、01:6000Hm/mas£/sHm/mas£/sASi/S1501:40000表2-1每千米长度的高程归化改正相对值ASi/Sym/mAS./Sas£/s101:800000451:400001501:3600201:200000501:30002001:2000301:900001001:8000表2-2边长离中央子午线垂距的长度相对变形当参考椭球面位于观测面下方时,长度的高程归化改正量为负值,而高斯投影改正包为正值,这两项改正是可以相互抵偿的。从表1和表2中可以得出:当观测地工程测量中的坐标系选择原理与方法面的大地高小于150m,或者是当观测点离中央子午线的
9、垂距不超过45km时,长度的两项改正值各自的影响都可以保证相对值小于1/40000,即长度变形值不大于2.5cm/km,此时,可以直接采用国家统一的3°带高斯正形投影平面直角坐标系统。当长度变形值大于2.5cm/km时,可依实际情况采用:投影于抵偿高程面上的高斯正形投影3。带的平面直角坐标系统;高斯正形投影任意带的平面直角坐标系夕本毕讥寸02.2、 抵偿高程面上的高斯正形投影3。带的平面直角坐标系统在这种坐标系中,仍采用国家3度带高斯投影,但投影的高程面不是参考椭球面,而是依据补偿高斯投影变形而选择的高程参考面。在这个高程参考面上,长度变形为零。当采用3度带高斯平面直角坐标系时,由错
10、误!未找到引用源。且错误!未找到引用源。超过允许的精度要求(每公里2.510cm)时,我们令错误!未找到引用源。=0,即错误!未找到引用源。=错误!未找到引用源。=0于是,当错误!未找到引用源。确定时,可得错误!未找到引用源。H=昔误!未找到引用源。进而计算出高程参考面。2.3、 任意带高斯正形投影的平面直角坐标系统在这种坐标系中,仍把地面观测元素归算到参考椭球面上,但投影带的中央子午线不按国家3度带的划分,而是依据能够补偿高程面上归算长度变形而选择的某一子午线作为中央子午线。同样根据错误!未找到引用源。=0可得y=错误!未找到引用源。即中央子午线的位置。比如,在某测区相对参考椭球面的高程H=
11、500m为抵偿地面观测值向参考椭球面上归算的改正,依上式得y=80(km)3工程测量中的坐标系选择原理与方法既选择与测区相距80kmt的子午线作为投影面的中央子午线,以消除或减弱两项改正引起的长度变形。但在实际应用这种坐标系时,往往是选取过测区边缘,或测区中央,或测区内某一点的子午线作为中央子午线,而不经上述的计算。2.4、 具有高程抵偿面的任意带高斯正形投影平面直角坐标系在这种坐标系中,往往是指投影的中央子午线选在测区的中央,地面观测元素归算到测区平均高程面上,按高斯正形投影计算平面直角坐标。通过限制和的大小从消除除或减弱两项改正引起的长度变形。最佳抵偿任意带坐标系的确定方法。在大型工程中,
12、由于对测量的长度变形控制很严格,因此大多使用最后一种坐标系作为其施工坐标系。工程测量中的坐标系选择原理与方法第三章具有抵偿高程面的任意带高斯正形平面直角坐标系设计原理由于具有抵偿高程面的任意带高斯正形平面直角坐标系的应用很广泛,并且本文作者在新建大同至西安铁路客运专线的一个标段实习,对此种坐标系的原理有一定的了解,因此本文着重介绍具有抵偿高程面的任意带高斯正形平面直角坐标系设计原理。3.1高斯正形投影著名的德国科学家卡尔弗里德里赫高斯在1820-1830年间在对德国汉诺威三件测量成果进行数据处理时,曾采用由他本人研究的将一条中央子午线长度投影规定为固定比例尺度的椭球正形投影。可是并没有发表和公
13、布它。人们只是从他给朋友的部分信件中知道这种投影的结论性投影公式。高斯投影的理论是在他死后,首先在史来伯与1866年出版的汉诺威大地测量投影方法的理论中进行了整理和加工,从而使高斯投影的理论公布于世。更详细的阐明高斯投影理论并给出实用公式的是有德国测量学家克吕格在他1912年出版的地球椭球向平面投影中给出的。在这部著作中,克吕格对高斯投影进行了比较深入的研究和补充,从而使之在许多国家得以应用。从此人们将这种投影成为高斯-克吕格投影。为了方便地实际应用高斯-克吕格投影,德国学者巴乌盖尔在1919年建议使用三度带投影,并把坐标纵轴洗衣500km,在纵坐标前冠以带号,这个投影带是从格林尼治开始起算的
14、。高斯-克吕格投影得到世界许多测量学家的重视和研究。其中保加利亚测量学者赫里斯托福的研究工作最具代表性。他的两部力作1943年旋转椭球上的高斯-克吕格坐标及1955年克拉索夫斯基椭球上的高斯和地理坐标,在理论及实际上都丰富了高斯-克吕格投影。现在世界上许多国家都采用高斯-克吕格投影,比如奥地利、德国、希腊、英国、美国、前苏联,我国于1952年正式决定采用高斯-克吕格投影。高斯投影,等角横轴椭圆柱投影,它是德国测量学家高斯于1825-1830年首先提出的。实际上,直到1912年,由德国另一位测量学家克吕格推导出实用公式后,这种投影才得到推广,所以该投影又成为高斯-克吕格投影。想象有一个椭圆柱面横
15、套在地球椭球体外面,并与某一条子午线(磁子午线为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此椭圆柱面展开纪委高斯-克吕格投影。高斯投影由于是等角投影(即投影后长度无变型)所以其为正形投影的一种,高斯投影具有以下七个特点:1 .中央子午线的投影是一条直线,其长度无变形;2 .其他子午线的投影为凹向中央子午线的曲线;3 .赤道的投影为一条与中央子午线垂直的直线;4 .纬线的投影为凸向迟到的曲线;工程测量中的坐标系选择原理与方法5 .除中央子午线外,其他线段的投影均有变形,且离中央子午线越远,长度变形越大
16、;6 .投影后长度无变形,且小范围内的图形保持相似。7 .投影具有对称性,面积有变形。根据高斯投影的以上特点可知,虽然投影前后的角度无变形,但存在长度变形,而且去中央子午线越远,长度变形越大,长度变形越大对测图、用图和测量计算都是不利的,因此我们通常采用分带的方法控制长度的变形。3.2 投影变形及其主要特特征分析外业测量所测得的数据的参考面为大地水准面,基准线为铅垂线,而工程图纸所使用的坐标系都为高斯平面直角坐标系,因此外业测量所得到的数据必须经过投影改正才能使用。这里的投影改正主要有两个步骤:3.2.1 观测的长度归算至参考椭球面上;3.2.2 椭球面上的长度归算至高斯平面上;3.2.3 将
17、地面观测的长度归算至参考椭球面我们这里假设测量基线的两端已经过垂线偏差改正,则基线平均水准面平行于椭球体面。此时由于大地水准面与参考椭球面存在高程异常,因此必须加以归算的改正。如图所示,AB为平均高程水准面上的基线长,以S0表示,现要求其在椭球面上的长度S,由图可知其中Hm为基线端点平均大地高程;Ra为基线方向法截线曲率半径,将上式展开级数,取至二次项,并考虑到R的值相对于Hm很大,则可得到由高程引起的基线归化改正数公式:工程测量中的坐标系选择原理与方法3.2.4 将参考椭球面上的长度归化至高斯平面将椭球面上的大地线描写在高斯投影面上,则变为平均长度。大地线上各微分弧段的长度比是不同的,但是对
18、于一条三角边来说,由于边长较短,长度比变化实际上是非常非常小的,可以认为是一个常数,在考虑到公式(1),可得:式中,Rm为测距边中点的曲率半径;Ym为测距边两端点的横坐标平均值;由于从外业实测数据改化至高斯平面进行了两次长度改正,可得:当取RmRa=6371000m时,根据(3)式可计算的每公里投影变形随Ym和Hm化的情况(见附表一)。有式(1)、(2)、(3)和表一,可一归纳投影变形的主要特征如下:地面实测长度归算至参考椭球体面上,总是缩短的,地面点与参考椭球面的高差越大、变形越大。椭球面上长度归算至高斯面上,总是增大的,离中央子午线愈远变形愈大。由于高程归化投影变形与高斯投影变形符号相反,
19、所以在一定的区域内,两种变形可以相互抵偿。3.3 设计原理铁路是典型的线性工程,穿行于狭长的带状区域,沿途地形、地貌千变万化,特别是在山岭地区或线路横跨多个国家统一3。带时,边长投影变形很难满足2.5cm/km的要求。因此,需要通过人为的方法,将中央子午线进行移动并重新选择高程参考面,以达到使两项变形良好抵偿的目的,通过这种方法所设计的坐标系,即为抵偿高程面任意带坐标系。设重新选定高程参考面的大地高为H,测距边相对于新的高程参考面的高程为AH,测距边两端点相对于重新选定中央子午线的横坐标平均值为y,则满足高速铁路对投影变形要求的条件式可近似表示为:工程测量中的坐标系选择原理与方法JAh<
20、1次,40000式(4)展开后得:+上_W&HW上+I244000。I巩400M式中Ra为归算边反响参考椭球面法截弧的曲率半径;Rm为测距边中点的平均曲率半径。依据式(5)的约束条件,即可进行抵偿高程面的任意带坐标系的设计。根据本章所述,想要控制长度变形无外乎两种办法:1)选择适当的高程投影面,即采用抵偿高程面;2)尽量使分带的中央子午线位于测区的中央;3.4 工程测量投影面和投影带选择的基本出发点(1)在满足工程测量上述精度要求的前提下,为使得测量结果一测多用,这时应采用国家统一的3度带高斯平面直角坐标系。这就是说,在这种情况下,工程测量控制网要同国家测量系统相联系,使两者的测量成果
21、相互利用。(2)当边长的两次归算投影改正不能满足上述要求时,为保证工程测量结果的直接利用和计算的方便,可以采用任意带的独立高斯平面直角坐标系,归算测量成果的参考面中央子午线可以由现实需要选定。为此,可采用下面三种手段来实现:(a):通过改变HR而选择合适的高程参考面,将抵偿分带投影变形,消除或减弱长度变形;(b):通过改变y,从而对中央子午线做适当移动,来抵偿由高程面上的边长归算到参考椭球面上的投影变形,消除或减弱长度变形;(c):通过既改变H(选择高程参考面),又改变y(移动中央子午线),来共同抵偿两项改正,消除或减弱长度变形。工程测量中的坐标系选择原理与方法第四章实例比较与分析(1)在新建
22、大同至西安客运专线铁路工程建设中,存在很明显的高斯任意带投影,但是由于作者所实习的单位并不是设计单位,所以无法查阅到抵偿高程面的相关信息,只是得到了其某标段中央子午线的相关信息如下:第H一施工系中央子午线经度:111度54分起始里程:DK406+500-DK420+000第十二施工系中央子午线经度:111度48分起始里程:DK420+000-终点这里列出相同点在不同施工系的不同坐标点号第十二施工系坐标4082311.1640509253.47444084791.9944510490.89614083910.1529510097.81804085147.5468510608.3004408557
23、7.8202510527.2233CPI30134082264.981500335.2182CPII30444084744.4868501575.2238CPII30454083863.0676501181.2265VJM1164085099.9122501692.9993VJM1154085530.2656501612.3737从以上列出的几个点的点位信息,可以很明显的看到在不同的中央子午线的坐标系下,同一点的两种坐标相差很大。(2)算例详细数据见附录,此处只列出结果。37带距离不加改正的计算结果K=1/1578.834714任意带(中央子午线113度)距离不加改正的计算结果K=1/6228
24、.4345671/2547.499337工程测量中的坐标系选择原理与方法任带(中央子午线113度38秒)距离不加改正的计算结果K=1/7679.70893838带(中央子午线114度)距离不加改正的计算结果K=1/7184.23176837带距离加改正的计算结果K=1/9248.810765由、分析可得:在都不加改正的情况下,随着坐标中央子午线由113度向114度移动,边长相对精度由低到高再由高到低变化。在113度38秒达到最高精度,推测,在不加边长改正情况下,若坐标投影中央子午线选在113度38秒附近适当位置,能得到最佳精度,即在不加边长改正的情况下,选的恰当的坐标中央子午线可提高精度。由、
25、分析可得:当投影中央子午线选择不当导致精度不高时,考虑边长改正后可显著提高精度。第五章总结高速铁路的建设会越来越多,具有抵偿高程面的任意带高斯平面坐标系克服了国家三度带坐标系的不足,能够有效地实现两种长度变形抵偿,可以达到控制变形对修建高速铁路的影响,日后其应用也会越来越多,在山岭地区、横跨多个国家统一三度带及线路纵坡变化比较大的地区的高速铁路或客运专线建设中,抵偿高程面任意带高斯平面直角坐标系具有良好的实用性。10工程测量中的坐标系选择原理与方法参考文献(1) 翟翊,赵夫来,郝向阳,杨玉海编著。现代测量学,北京:测绘出版社,2008.12。(2) 孔祥元,郭际明主编。控制测量学,第三版。武汉
26、:武汉大学出版社,2006.11o(3) 全玉山。具有抵偿高程面的任意带坐标设计原理与方法,铁道勘察,2005年第四期。11工程测量中的坐标系选择原理与方法致谢感谢赵夫来教员在本文写作中所给予的帮助!附录表I保公里投蛎变形品对照小01020304030W70如104)110120130140150SOQDb-47-47-46*45*44-4341-曲方-15-32,当"6-泰1925M-和的-即-11“37-比-3533"1R-27-24-22-B12im-31-31-31"0-29-282725-24*21*1916-1411-7.3工?1泗-24-23-U-2
27、2-22-20-凶-他76-U71-N,6-337Q.64.171OQD>1616-15-15«1413H-9,7-7.8-5.7-3.J仇B2.045.12HJ412m-L4-14-U-13-12-97-11-6.2-4J-LK0JK工6】6.691013.6加0-13212*11119.5TK.1也5TJ*2,60.22.355.18K26U.«15.2m-II-11-10-9.9-9-?.9-6.65-3.1-13.926.7$IX.11X216.7m*9,49.3*K.9-KJ*Z4-6,35*泉4-LS0.5639J.4K民皿1L4171B.3500-7泮-
28、7.7-7.4-6.7-S94.居-3,4-1,K(X032A34477.05史加13I&3母9400-6,JL4,2.5,85.2*43-3.218-0.21.63.76.048.6211J14,517E21.4司Q4.7-4-6423.6-27-1.6-仇3IH1175.2?Z6110.21316.】19.4200-h-/2.6-2L2-0.11.刘244.746.S4U811.KH.617,72124.6100-L6-1-4-,10.50.41.51LK64.466.313110.713.316.219.22Z626.1000.120J9MlL97J.C®4.437,B
29、K9.97123H.917120824127.7工程测量中的坐标系选择原理与方法双定向附合导线计算点名观测角改正数方位角边长AXVx,Yvy纵坐标X横坐标Ymy"384970358706l153.53088.848.110zy8.543-0.811647384692860061ds018342.5655.0626.2+0.-195.0.6.506.55015342.5-0.241315803078929384755459866775918145.5218.8-181.+0.122.80.2.794.390104.375-0.040561070107510384737359989011
30、8330.2249.2216.8+0.-122.0.2.697.47510196.4-0.831367101282339384759059866133318347.1166.1162.0+0.-36.80.1.580.89210186.4-0.20442140080559384775259830243218353.5182.6F181.6+0.-19.20.1.602.24610122.4-0.63663430097375384793459811301718296.3114.851.45+0.-102.0.1.253.14811161.3-0.6536270056911038479855970
31、8442318278.1266.337.92+0.-263.0.2.716.56811185.0-0.11607701259256384802359445505318283.1162.2F37.06+0.-157.0.1.655.23111222.1-0.20981400899256384806059287632218325.2254.7209.7+0.-144.0.2.727.39511189.1-0.531102501254345384827059143721518334.3487.5440.5+0.-208.0.4.463.09715133.5-0.7463010023892683848
32、71058934861218288.3281.0.996.673mf35873384880058668c.487.227a158-mfc=288.3356fb=00.0002任意带(中央子午线113度)距离不加改正的计算结果13工程测量中的坐标系选择原理与方法双定向附合导线计算点名观测角改正数方位角边长/XVx,Yvy纵坐标X横坐标Ymyl3849575.082467164.890154.32243088.552zyds8.5430-0.183846786.475468492.605343.2654655.031627.889+4.829-186.605-0.062157342.5759-0.
33、183847419.193468305.938146.2453218.856-182.321+1.613121.066-0.0211004.3751-0.183847238.485468426.983331.0244249.236218.083+1.837-120.659-0.024101196.4333-0.183847458.406468306.300347.4617166.142162.372+1.225-35.191-0.016102186.4432-0.183847622.002468271.094354.3049182.663181.826+1.347-17.464-0.01710
34、3122.4017-0.183847805.175468253.612297.1106114.86252.476+0.847-102.174-0.011114161.3423-0.183847858.498468151.427278.4529266.30740.549+1.963-263.202-0.025115185.0053-0.183847901.010467888.200283.4622162.28138.635+1.196-157.615-0.015116222.1322-0.183847940.841467730.570325.5944254.710211.153+1.878-14
35、2.448-0.024117189.1215-0.183848153.872467588.097335.1159487.530422.568+3.594-204.498-0.046158133.5612-0.183848580.034467383.553289.0811281.064mfc3848672.169467118.019a158-mfc=289.0809fb=00.000238带(中央子午线114度)距离不加改正的计算结果14工程测量中的坐标系选择原理与方法双定向附合导线计算点名观测角改正数方位角边长/XVx,Yvy纵坐标X横坐标Ymyl3852696.728741817.27715
36、2.49433090.751zyds8.5430-0.183849947.056743228.676341.4413655.485622.467+14.033-205.416+0.005157342.5759-0.183850583.556743023.265144.4212219.010-237.514+4.689126.546+0.0021004.3751-0.183850350.730743149.812329.2003249.410214.532+5.340-127.207+0.002101196.4333-0.183850570.602743022.607346.0336166.25
37、8161.361+3.559-40.052+0.001102186.4432-0.183850735.522742982.556352.4808182.790181.350+3.913-22.903+0.001103122.4017-0.183850920.786742959.655295.2825114.94249.436+2.461-103.768+0.001114161.3423-0.183850972.682742855.888277.0248266.79332.730+5.712-264.778+0.002115185.0053-0.183851011.124742591.112282.0341162.39433.934+3.477-158.809+0.001116222.1322-0.183851048.535
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购合同中的采购计划编制技巧3篇
- 采购战略合同的绿色发展战略机遇3篇
- 采购合同与销售合同的合同终止3篇
- 采购合同的终止方式3篇
- 采购合同中的家具篇3篇
- 采购合同条款的合同案例分析3篇
- 采购框架协议合同模板3篇
- 采购合同模板样式技巧3篇
- 采购合同评审流程的培训课程3篇
- 采购合同风险防范与研究分享3篇
- 我不是药神电影赏析
- 2024年四川遂宁开祺资产管理有限公司招聘笔试参考题库含答案解析
- 有机肥料及微生物肥料行业的环境影响与生态保护
- 提高检验标本合格率的品管圈课件
- 幼儿园教育的德育培养
- 顺丰SHL在线测评题库
- 贵州省黔东南州2022-2023学年八年级上学期期末文化水平测试数学试卷(含答案)
- 快消品招商方案
- 河南省洛阳市2022-2023学年高一上学期期末语文试卷(含答案)
- 切割机安全培训
- 充电桩采购安装售后服务方案
评论
0/150
提交评论