版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.1.2离散型随机变量的分布列离散型随机变量的分布列(1)一、复习引入:一、复习引入: 如果随机试验的结果可以用一个变量来表示,(或如果随机试验的结果可以用一个变量来表示,(或随着随着试验结果变化而变化的变量),试验结果变化而变化的变量),那么这样的变量叫做随机那么这样的变量叫做随机变量变量 随机变量常用希腊字母随机变量常用希腊字母X X、Y Y、等表示。等表示。1. 1. 随机变量随机变量 2、离散型随机变量、离散型随机变量 所有取值可以一一列出的随机变量,称为所有取值可以一一列出的随机变量,称为离离散型随机变量。散型随机变量。试验中所有可能出现的基本事件只有有限个;试验中所有可能出现的基
2、本事件只有有限个;每个基本事件出现的可能性相等。每个基本事件出现的可能性相等。3、古典概型、古典概型:( )mP An抛掷一枚骰子,所得的点数有哪些值?取抛掷一枚骰子,所得的点数有哪些值?取每个值的概率是多少?每个值的概率是多少? 1616161616(4)P (2)P (3)P (5)P (6)P 16(1)P 则则 P1 12 26 65 54 43 3161616161616而且列出了的每一个取值的概率而且列出了的每一个取值的概率 该表不仅列出了随机变量的所有取值该表不仅列出了随机变量的所有取值 解:解: 的取值有的取值有1 1、2 2、3 3、4 4、5 5、6 6 列成列成表的表的形
3、式形式分布列分布列二、离散型随机变量的分布列二、离散型随机变量的分布列1、设随机变量的所有可能的取值为、设随机变量的所有可能的取值为则称表格则称表格123,inxxxxx 的每一个取值的每一个取值 的概率为的概率为 ,ix(1,2, )iniipxP)(P1xix2x1p2pip为随机变量为随机变量的的概率分布概率分布,简称简称的的分布列分布列注:注:1、分布列的构成分布列的构成列出了随机变量列出了随机变量的所有取值的所有取值求出了求出了的的每一个取值的概率每一个取值的概率2、分布列的性质分布列的性质 ,2, 1,0 ipi121 pp有时为了表达简单,也用等式有时为了表达简单,也用等式 表示
4、表示 的分布列的分布列(),1,2,3,.,iiPxp in取每一个值取每一个值 的概率的概率 123,ixxxxx1x2xipp1p2pi称为随机变量称为随机变量 的的概率分布列概率分布列,简称,简称 的分布列的分布列.则称表则称表(1,2,)ixi ()iiPxp 1.设离散型随机变量设离散型随机变量可能取的值为可能取的值为二、离散型随机变量的分布列二、离散型随机变量的分布列注:注:1、分布列的构成分布列的构成列出了随机变量列出了随机变量的所有取值的所有取值求出了求出了的的每一个取值的概率每一个取值的概率2.概率分布还经常用图象来表示概率分布还经常用图象来表示.O 1 2 3 4 5 6
5、7 8 p0.10.2可以看出可以看出 的取值的取值范围范围1,2,3,4,5,6,它取每一个值的概它取每一个值的概率都是率都是 。162、分布列的性质分布列的性质 , 2 , 1, 0 ipi121 pp有时为了表达简单,也用等式有时为了表达简单,也用等式 表示表示 的分布列的分布列(),1,2,3,.,iiPxp in例例1:抛掷两枚骰子,点数之和为:抛掷两枚骰子,点数之和为,则,则可可能取的值有:能取的值有:2,3,4,12.的概率分布为:的概率分布为:23456789101112361361362362363363364364365365366练练1 1:某一射手射击所得环数某一射手射
6、击所得环数 的分布列如下的分布列如下: :45678910P0.020.040.060.090.280.290.22求此射手求此射手”射击一次命中环数射击一次命中环数7 7”的概率的概率. . 分析分析: : ”射击一次命中环数射击一次命中环数7 7”是指互斥事是指互斥事件件”=7=7”, , ”=8=8”, , ”=9=9”, , ”=10=10” 的和的和. .0.88例例2 2. .随机变量随机变量的分布列为的分布列为解解:(1)由离散型随机变量的分布列的性质有由离散型随机变量的分布列的性质有- -10123p0.16a/10a2a/50.3(1)求常数)求常数a;(2)求)求P(14)
7、(2)P(14)=P(=2)+P(=3)=0.12+0.3=0.42解得:解得:(舍)或(舍)或20.160.31105aaa 910a 35a 练习练习2 2已知随机变量的分布列如下:已知随机变量的分布列如下: P2 21 13 32 21 10 0112161121314112分别求出随机变量分别求出随机变量112 22 ;的分布列的分布列 解:解:由由112 可得可得1 的取值为的取值为1 1、12 、0、12、1、32且且相应取值的概率没有变化相应取值的概率没有变化的分布列为:的分布列为:1 P1101121611213141122121321 练习练习2:已知随机变量的分布列如下:已
8、知随机变量的分布列如下: P2 21 13 32 21 10 0112161121314112分别求出随机变量分别求出随机变量112 22 ;的分布列的分布列 21(9)(3)12PP的分布列为:的分布列为:2 2 解解:(2):(2)由由可得可得的取值为的取值为0、1、4、922 2(1)(1)(1)PPP 2(0)(0)PP 1;311412 132(4)(2)(2)PPP 1111264 P09411213141132 练习练习2:已知随机变量的分布列如下:已知随机变量的分布列如下: P2 21 13 32 21 10 0112161121314112分别求出随机变量分别求出随机变量11
9、2 22 ;的分布列的分布列 课堂练习:课堂练习:4.4.设随机变量的分布列为设随机变量的分布列为则的值为则的值为 1(),3iPia 1,2,3i a3.3.设随机变量的分布列如下:设随机变量的分布列如下: P4321161316p则的值为则的值为p 3113275.5.设随机变量的分布列为设随机变量的分布列为 P1011212q 2q则(则( )q A、1B、C、D、212 212 212 6.6.设随机变量只能取设随机变量只能取5 5、6 6、7 7、1616这这1212个值,个值,且取每一个值的概率均相等,则且取每一个值的概率均相等,则, ,若若 则实数的取值范围是则实数的取值范围是
10、(8)P 1()12Px xD326,5 例例3 3:一袋中装有一袋中装有6个同样大小的小球,编号为个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出现从中随机取出3个小球,以表示取出球的最大号码,求个小球,以表示取出球的最大号码,求 的分布列的分布列解:解:”3“表示其中一个球号码等于表示其中一个球号码等于“3”,另两个都比,另两个都比“3”小小 )3(P121236C CC 201”4“ )4(P121336C CC 203”5“ )5(P121436C CC 103”6“ )6(P121536C CC 21随机变量随机变量的分布列为:的分布列为:P65432012031032
11、1的所有取值为:的所有取值为:3、4、5、6表示其中一个球号码等于表示其中一个球号码等于“4”,另两个都比另两个都比“4”小小表示其中一个球号码等于表示其中一个球号码等于“5”,另两个都比另两个都比“5”小小表示其中一个球号码等于表示其中一个球号码等于“6”,另两个都比另两个都比“6”小小说明:在写出说明:在写出的分布列后,要及时检查所有的概率之和是否为的分布列后,要及时检查所有的概率之和是否为1 课堂练习课堂练习:1、下列、下列A、B、C、D四个表,其中能成为随机变量四个表,其中能成为随机变量 的的分布列的是(分布列的是( )A01P0.60.3B012P0.90250.0950.0025C
12、012 nP121418112nD012nP131 23 3212331233nB课堂练习课堂练习:3、设随机变量的分布列如下:、设随机变量的分布列如下:123nPK2K4K K12n求常数求常数K。4、袋中有、袋中有7个球,其中个球,其中3个黑球,个黑球,4个红球,从袋中个红球,从袋中任取个任取个3球,求取出的红球数球,求取出的红球数 的分布列。的分布列。121nK 思考思考2思考思考1.1.一个口袋里有一个口袋里有5 5只球只球, ,编号为编号为1,2,3,4,5,1,2,3,4,5,在袋中同在袋中同时取出时取出3 3只只, ,以以表示取出的表示取出的3 3个球中的最小号码个球中的最小号码
13、, ,试写出试写出的分布列的分布列. . 解解: : 随机变量随机变量的可取值为的可取值为 1,2,3. 1,2,3.当当=1=1时时, ,即取出的三只球中的最小号码为即取出的三只球中的最小号码为1,1,则其它则其它两只球只能在编号为两只球只能在编号为2,3,4,52,3,4,5的四只球中任取两只的四只球中任取两只, ,故故有有P(P(=1)= =3/5;=1)= =3/5;2345/CC同理可得同理可得 P( P(=2)=3/10;P(=2)=3/10;P(=3)=1/10.=3)=1/10. 因此因此, ,的分布列如下表所示的分布列如下表所示 1 2 3p3/53/101/103(4)0.
14、10.9P 9 . 01 . 0)3(2P同理同理 ,思考思考2.2.某射手有某射手有5 5发子弹,射击一次命中的概率为发子弹,射击一次命中的概率为0.9, 0.9, 如果命中了就停止射击,否则一直射击到子弹用完,如果命中了就停止射击,否则一直射击到子弹用完,求耗用子弹数求耗用子弹数 的分布列的分布列; ; 如果命中如果命中2 2次就停止射击,否则一直射击到子弹用完,次就停止射击,否则一直射击到子弹用完,求耗用子弹数求耗用子弹数 的分布列的分布列解解: : 的所有取值为:的所有取值为:1、2、3、4、5 1 表示第一次就射中,它的概率为:表示第一次就射中,它的概率为:(1)0.9P 2 表示第
15、一次没射中,第二次射中,表示第一次没射中,第二次射中,(2)0.1 0.9P 5 表示前四次都没射中,表示前四次都没射中,4(5 )0 .1P 随机变量随机变量的分布列为:的分布列为: P432150.90.1 0.9 20.10.9 30.10.9 40.1思考思考2.2.某射手有某射手有5 5发子弹,射击一次命中的概率为发子弹,射击一次命中的概率为0.90.9如果命中如果命中2 2次就停止射击,否则一直射击到子弹用完,次就停止射击,否则一直射击到子弹用完,求耗用子弹数的分布列求耗用子弹数的分布列解:解:的所有取值为:的所有取值为:2、3、4、5”2“表示前二次都射中,它的概率为:表示前二次
16、都射中,它的概率为:29 . 0)2(P3 表示前二次恰有一次射中,第三次射中,表示前二次恰有一次射中,第三次射中,12(3)0.9 0.1 0.9PC ”5“表示前四次中恰有一次射中,或前四次全部没射中表示前四次中恰有一次射中,或前四次全部没射中随机变量随机变量的分布列为:的分布列为:1220.1 0.9C 123(4)0.9 0.10.9PC 同理同理12230.10.9C P543220.91220.1 0.9C 12230.10.9C 13440.9 0.10.1C 思考思考3.3.将一枚骰子掷将一枚骰子掷2 2次次, ,求下列随机变量的概率分布求下列随机变量的概率分布. .(1)(1
17、)两次掷出的最大点数两次掷出的最大点数; ;(2)(2)第一次掷出的点数减去第二次掷出的点数之差第一次掷出的点数减去第二次掷出的点数之差. .解解:(1):(1) =k=k包含两种情况包含两种情况, ,两次均为两次均为k k点点, ,或一个或一个k k点点, ,另另一个小于一个小于k k点点, , 故故P(P( =k)= ,(k=1,2,3,4,5,6.)=k)= ,(k=1,2,3,4,5,6.)3612662) 1(1 kk(3)(3)的取值范围是的取值范围是-5,-4,-5,-4,,4 4,5.5. 从而可得从而可得的分的分布列是:布列是: -5-5 -4-4 -3-3 -2-2 -1-
18、1 0 01 12 23 34 45 5 p p136236336436536636536436336236136P6 65 54 43 32 21 1 1363365367369361136例 4、在掷一枚图钉的随机试验中在掷一枚图钉的随机试验中,令令1,0,X针针尖尖向向上上针针尖尖向向下下如果针尖向上的概率为如果针尖向上的概率为p,试写出随机变量试写出随机变量X的分布列的分布列解解:根据分布列的性质根据分布列的性质,针尖向下的概率是针尖向下的概率是(1p),于是,于是,随机变量随机变量X的分布列是:的分布列是:X01P1pp3、两点分布列、两点分布列象上面这样的分布列称为象上面这样的分布
19、列称为两点分布列两点分布列。如果随机变量。如果随机变量X的分的分布列为两点分布列,就称布列为两点分布列,就称X服从服从两点分布两点分布,而称,而称p=P(X=1)为为成功概率成功概率。练习:练习:1、在射击的随机试验中,令、在射击的随机试验中,令X= 如如果射中的概率为果射中的概率为0.8,求随机变量,求随机变量X的分布列。的分布列。0,射中,射中,1,未射中,未射中2、设某项试验的成功率是失败率的、设某项试验的成功率是失败率的2倍,用随机倍,用随机变量变量 去描述去描述1次试验的成功次数,则失败率次试验的成功次数,则失败率p等等于(于( ) A.0 B. C. D.121323C超几何分布超几何分布例例11答案答案3答案答案例例5 从一批有从一批有10个合格品与个合格品与3个次品的产品中,一件一件个次品的产品中,一件一件地抽取产品,设各个产品被抽到的可能性相同,在下列两地抽取产品,设各个产品被抽到的可能性相同,在下列两种情况下,分别求出直到取出合格品为止时所需抽取的次种情况下,分别求出直到取出合格品为止时所需抽取的次数数 的分布列的分布列解:解: ) 1(P113110CC1310 )2(P21311013ACC265 )3(P31311023ACA1435分布列为:分布列为:的所有取值为:的所有取值为:1、2、3、4(1)每次取出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合作办学项目协议范本
- 重型吊车租赁合同范本
- 展览活动参展协议书模板
- 2024装修大包合同模板
- 2024年离婚协议书范本简易
- 新服装定制合同样本
- 2.2 创新永无止境导学案 2024-2025学年统编版道德与法治九年级上册
- 债券认购与债权转让合同实务
- 门店租赁合同协议书
- 上海市超市洗涤产品流通安全协议
- 行政服务中心窗口工作人员手册
- 最新患者用药情况监测
- 试桩施工方案 (完整版)
- ESTIC-AU40使用说明书(中文100版)(共138页)
- 河北省2012土建定额说明及计算规则(含定额总说明)解读
- 中工商计算公式汇总.doc
- 深圳市建筑装饰工程消耗量标准(第三版)2003
- 《初中英语课堂教学学困生转化个案研究》开题报告
- 钢筋桁架楼承板施工方案
- 恒温箱PLC控制系统毕业设计
- 176033山西《装饰工程预算定额》定额说明及计算规则
评论
0/150
提交评论