版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学解题基本方法换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。换元的方法有:局部换
2、元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4220,先变形为设2t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y的值域时,易发现x0,1,设xsin ,0,,问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件xyr(r>0)时,则可作三角代换xrcos、yrsin化为
3、三角问题。均值换元,如遇到xyS形式时,设xt,yt等等。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和0,。、再现性题组:1.ysinx·cosxsinx+cosx的最大值是_。2.设f(x1)log(4x) (a>1),则f(x)的值域是_。3.已知数列a中,a1,a·aaa,则数列通项a_。4.设实数x、y满足x2xy10,则xy的取值范围是_。5.方程3的解是_。6.不等式log(21) ·log(22)2的解集是_。【简解
4、】1小题:设sinx+cosxt,,则yt,对称轴t1,当t,y;2小题:设x1t (t1),则f(t)log-(t-1)4,所以值域为(,log4;3小题:已知变形为1,设b,则b1,b1(n1)(-1)n,所以a;4小题:设xyk,则x2kx10, 4k40,所以k1或k1;5小题:设3y,则3y2y10,解得y,所以x1;6小题:设log(21)y,则y(y1)<2,解得2<y<1,所以x(log,log3)。、示范性题组:例1. 实数x、y满足4x5xy4y5 ( 式) ,设Sxy,求的值。(93年全国高中数学联赛题)【分析】 由Sxy联想到cossin1,于是进行三
5、角换元,设代入式求S和S的值。【解】设代入式得: 4S5S·sincos5 解得 S ; -1sin21 385sin213 此种解法后面求S最大值和最小值,还可由sin2的有界性而求,即解不等式:|1。这种方法是求函数值域时经常用到的“有界法”。【另解】 由Sxy,设xt,yt,t, 则xy±代入式得:4S±5=5, 移项平方整理得 100t+39S160S1000 。 39S160S1000 解得:S 【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件Sxy与三角公式cossin1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题。第二种
6、解法属于“均值换元法”,主要是由等式Sxy而按照均值换元的思路,设xt、yt,减少了元的个数,问题且容易求解。另外,还用到了求值域的几种方法:有界法、不等式性质法、分离参数法。和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x、y时,可以设xab,yab,这称为“和差换元法”,换元后有可能简化代数式。本题设xab,yab,代入式整理得3a13b5 ,求得a0,,所以S(ab)(ab)2(ab)a,,再求的值。例2 ABC的三个内角A、B、C满足:AC2B,求cos的值。(96年全国理)【分析】 由已知“AC2B”和“三角形内角和等于180°”的性质,可得 ;由“AC120
7、°”进行均值换元,则设 ,再代入可求cos即cos。【解】由ABC中已知AC2B,可得 ,由AC120°,设,代入已知等式得:2,解得:cos, 即:cos。【另解】由AC2B,得AC120°,B60°。所以2,设m,m ,所以cosA,cosC,两式分别相加、相减得:cosAcosC2coscoscos,cosAcosC2sinsinsin,即:sin,代入sincos1整理得:3m16m120,解出m6,代入cos。【注】 本题两种解法由“AC120°”、“2”分别进行均值换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元
8、外,还要求对三角公式的运用相当熟练。假如未想到进行均值换元,也可由三角运算直接解出:由AC2B,得AC120°,B60°。所以2,即cosAcosC2cosAcosC,和积互化得:2coscoscos(A+C)cos(A-C),即coscos(A-C)(2cos1),整理得:4cos2cos30,解得:cos y , , x例3. 设a>0,求f(x)2a(sinxcosx)sinx·cosx2a的最大值和最小值。【解】 设sinxcosxt,则t-,,由(sinxcosx)12sinx·cosx得:sinx·cosx f(x)g(t)(
9、t2a) (a>0),t-,t-时,取最小值:2a2a当2a时,t,取最大值:2a2a ;当0<2a时,t2a,取最大值: 。 f(x)的最小值为2a2a,最大值为。【注】 此题属于局部换元法,设sinxcosxt后,抓住sinxcosx与sinx·cosx的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解。换元过程中一定要注意新的参数的范围(t-,)与sinxcosx对应,否则将会出错。本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论。一般地,在遇到题目已知和未知中含有sinx与c
10、osx的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx±cosx,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究。例4. 设对所于有实数x,不等式xlog2x loglog>0恒成立,求a的取值范围。(87年全国理)【分析】不等式中log、 log、log三项有何联系?进行对数式的有关变形后不难发现,再实施换元法。【解】 设logt,则loglog3log3log3t,log2log2t,代入后原不等式简化为(3t)x2tx2t>0,它对一切实数x恒成立,所以:,解得 t<0即log<00<
11、<1,解得0<a<1。【注】应用局部换元法,起到了化繁为简、化难为易的作用。为什么会想到换元及如何设元,关键是发现已知不等式中log、 log、log三项之间的联系。在解决不等式恒成立问题时,使用了“判别式法”。另外,本题还要求对数运算十分熟练。一般地,解指数与对数的不等式、方程,有可能使用局部换元法,换元时也可能要对所给的已知条件进行适当变形,发现它们的联系而实施换元,这是我们思考解法时要注意的一点。例5. 已知,且 (式),求的值。【解】 设k,则sinkx,cosky,且sincosk(x+y)1,代入式得: 即:设t,则t , 解得:t3或 ±或±
12、【另解】 由tg,将等式两边同时除以,再表示成含tg的式子:1tgtg,设tgt,则3t10t30,t3或, 解得±或±。【注】 第一种解法由而进行等量代换,进行换元,减少了变量的个数。第二种解法将已知变形为,不难发现进行结果为tg,再进行换元和变形。两种解法要求代数变形比较熟练。在解高次方程时,都使用了换元法使方程次数降低。例6. 实数x、y满足1,若xyk>0恒成立,求k的范围。【分析】由已知条件1,可以发现它与ab1有相似之处,于是实施三角换元。【解】由1,设cos,sin,即: 代入不等式xyk>0得:3cos4sink>0,即k<3cos4
13、sin5sin(+) 所以k<-5时不等式恒成立。【注】本题进行三角换元,将代数问题(或者是解析几何问题)化为了含参三角不等式恒成立的问题,再运用“分离参数法”转化为三角函数的值域问题,从而求出参数范围。一般地,在遇到与圆、椭圆、双曲线的方程相似的代数式时,或者在解决圆、椭圆、双曲线等有关问题时,经常使用“三角换元法”。 y x xyk>0 k 平面区域本题另一种解题思路是使用数形结合法的思想方法:在平面直角坐标系,不等式axbyc>0 (a>0)所表示的区域为直线axbyc0所分平面成两部分中含x轴正方向的一部分。此题不等式恒成立问题化为图形问题:椭圆上的点始终位于平面上xyk>0的区域。即当直线xyk0在与椭圆下部相切的切线之下时。当直线与椭圆相切时,方程组有相等的一组实数解,消元后由0可求得k3,所以k<-3时原不等式恒成立。、巩固性题组:1. 已知f(x)lgx (x>0),则f(4)的值为_。A. 2lg2 B. lg2 C. lg2 D. lg42. 函数y(x1)2的单调增区间是_。A. -2,+) B. -1,+) D. (-,+) C. (-,-13. 设等差数列a的公差d,且S145,则aaaa的值为_。A. 85 B. 72.5 C. 60 D. 52.54. 已知x4y4x,则xy的范围是_。5. 已知a0,b0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权授权使用合同:游戏开发公司与特效供应商之间的合作
- 2024年家居装修设计协议关键条款明细版B版
- 2024历史文化图书批量采购协议版B版
- 2024年度设备购买合同标的物描述及购买条件详细条款3篇
- 2024版建筑工地仓储设备租赁合同3篇
- 二零二四年度健康管理合同3篇
- 二零二四年度合作开发合同的各方权益、合作方式和利润分配2篇
- 2024年度房屋买卖合同付款方式与交房标准
- 二零二四年公司卷烟物流配送中心废气处理合同3篇
- 二零二四年光伏电站建设与运营管理合同2篇
- 《中华人民共和国安全生产法》知识培训
- EPC项目阶段划分及工作结构分解方案
- 军工行业居间合作协议模板
- 【数学】小学四年级口算题大全(10000道)
- 中国脑出血诊治指南
- 中建《房屋建筑工程导则》概述
- Unit7《Happy Birthday!》-2024-2025学年三年级上册英语单元测试卷(译林版三起 2024新教材)
- 便秘的护理病例分析
- 北师大版(2024)一年级数学上册第六章综合实践记录我的一天第3课时《分享我的一天》教学课件
- 大学英语六级考试 2022 年 9 月真题(第一套)
- 江苏省南京市化学中考试题及解答参考(2024年)
评论
0/150
提交评论