版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、此处有动画播放在运动中,刚体上的任意一点与某一固定平面始终保持相等的距离,这种运动称为平面运动。此处有影片播放此处有影片播放8.1 刚体平面运动概述和运动分解MNSA1A2A刚体上每一点都在与固定平面M平行的平面内运动。 若作一平面N与平面M平行,并以此去截割刚体得一平面图形S。 可知该平面图形S始终在平面N内运动。因而垂直于图形S的任一条直线A1A2必然作平移。A1A2的运动可用其与图形 S的交点 A的运动来替代。刚体的平面运动可以简化为平面图形在其自身平面S内的运动。123( ),( ),( )OOxf tyf tf t这就是平面图形的运动方程。SMOyxO8.1 刚体平面运动概述和运动分
2、解平面图形S在其平面上的位置完全可由图形内任意线段OM的位置来确定,而要确定此线段的位置,只需确定线段上任一点O的位置和线段OM与固定坐标轴Ox间的夹角即可。点O的坐标和角都是时间的函数,即平面图形的运动方程可由两部分组成:一部分是平面图形按点O的运动方程xO = f1(t), yO = f2(t)的平移,没有转动;另一部分是绕O点转角为 = f3(t)的转动。8.1 刚体平面运动概述和运动分解平面运动的这种分解也可以按上一章合成运动的观点加以解释。以沿直线轨道滚动的车轮为例,取车厢为动参考体,以轮心点O为原点取动参考系Oxy,则车厢的平移是牵连运动,车轮绕平移参考系原点O的转动是相对运动,二
3、者的合成就是车轮的平面运动(绝对运动)。单独轮子作平面运动时,可在轮心O处固连一个平移参考系Oxy,同样可把轮子这种较为复杂的平面运动分解为平移和转动两种简单的运动。yxOyxO8.1 刚体平面运动概述和运动分解对于任意的平面运动,可在平面图形上任取一点O,称为基点。在这一点假想地安上一个平移参考系Oxy;平面图形运动时,动坐标轴方向始终保持不变,可令其分别平行于定坐标轴Ox和Oy 。于是平面图形的平面运动可看成为随同基点的平移和绕基点转动这两部分运动的合成。yxOyxO运动分析运动分析=+平面运动平面运动 = = 随随 的平移的平移+ +绕绕 点的转动点的转动 O x y OO x y 平移
4、坐标系平移坐标系8.1 刚体平面运动概述和运动分解ABSA SA B B 12则直线AB随之运动到的AB位置. 设在时间t内平面图形S从位置运动到位置.由几何关系可知: 1 = 2由此推得:1 = 21 = 2以A为基点以B为基点8.1 刚体平面运动概述和运动分解结论: 在同一瞬时,图形绕任一基点转动的角速度和角加速度都是相同的. 平面运动随同基点的平移规律与基点的选择有关,而绕基点的转动规律与基点的选择无关. 又因动系平移,故在动系中观察到图形的角速度与角加速度,就是图形相对静系的绝对角速度和绝对角加速度.8.1 刚体平面运动概述和运动分解 因此我们以后仅称平面图形(平面运动刚体)的角速度、
5、角加速度,而不指明是相对于取那个基点的平移参考系的、也不说明是相对静系还是动系的。OM 平面图形内任一点的速度等于基点的速度与该点随图形绕基点转动速度的矢量和,这就是平面运动的速度合成法或称基点法。1. 基点法已知O点的速度及平面图形转动的角速度,求M点的速度。8.2 求平面图形内各点速度的基点法vMvOvMOvOaervvvMOMOvvv例1 椭圆规机构如图。已知连杆AB的长度l = 20 cm,滑块A的速度vA=10 cm/s ,求连杆与水平方向夹角为30时,滑块B和连杆中点M的速度。 解: AB作平面运动,以A为基点,分析B点的速度。cot3010 3 cm/sBAvv由图中几何关系得:
6、1rad sBAABvl方向如图所示。AvAvAvBvBABAB30BABAvvvM20 cm/ssin30ABAvv30以A为基点,则M点的速度为将各矢量投影到坐标轴上得::cossin30MAMAxvvv :sincos30MMAyvv解之得10cm sMvtan360AvAvAvMABAB30MvMMAMAvvvxy例2 行星轮系机构如图。大齿轮I固定,半径为r1;行星齿轮II沿轮I只滚而不滑动,半径为r2。系杆OA角速度为O。求轮II的角速度II及其上B,C两点的速度。解:行星齿轮II作平面运动,求得A点的速度为vAODADAvvvODACBvAvDAIIIII以A为基点,分析两轮接触
7、点D的速度。12()AOOvOArr由于齿轮I固定不动,接触点D不滑动,显然vD0,因而有vDAvAO(r1+r2),方向与vA相反,vDA为点D相对基点A的速度,应有vDA IIDA。所以12II2()ODArrvDArvAOCACAvvvODACBvAvCAvCvBvBAvAIIIII以A为基点,分析点B的速度。II12()BAOAvBArrvBABAvvvvBA与vA垂直且相等,点B的速度221222()BABAAOvvvvrr以A为基点,分析点C的速度。vCA与vA方向一致且相等,点C的速度II12()CAOAvCArrv122()CCAOvvvrr 同一平面图形上任意两点的速度在其连
8、线上的投影相等。这就是速度投影定理。2. 速度投影定理由于vBA垂直于AB,因此vBAAB=0。于是将等式两边同时向AB方向投影:8.2 求平面图形内各点速度的基点法ABvBvAvBAvABABAABABABvvvBAABABvvBABAvvv例3 用速度投影定理解例1。解:由速度投影定理得60cos30cosBAvv解得10 3cm sBv BAABABvvAvAvBB30定理:一般情况,在每一瞬时,平面图形上都唯一地存在一个速度为零的点。8.3 求平面图形内各点速度的瞬心法S设有一个平面图形S角速度为,图形上点A的速度为vA,如图。在vA的垂线上取一点C (由vA到AC的转向与图形的转向一
9、致),有如果取AC vA / ,则CAvvAC0CAvvACNCvAvCA该点称为瞬时速度中心,或简称为速度瞬心。 vAA图形内各点速度的大小与该点到速度瞬心的距离成正比。速度的方向垂直于该点到速度瞬心的连线,指向图形转动的一方。 8.3 求平面图形内各点速度的瞬心法CAvAvBBDvDC确定速度瞬心位置的方法有下列几种:(1) 平面图形沿一固定表面作无滑动的滚动,图形与固定面的接触点C就是图形的速度瞬心。如车轮在地面上作无滑动的滚动时。8.3 求平面图形内各点速度的瞬心法vC(2) 已知图形内任意两点A和B的速度的方向,速度瞬心C的位置必在每点速度的垂线的交线上。 8.3 求平面图形内各点速
10、度的瞬心法ABOCvAABvB (3) 已知图形上两点A和B的速度相互平行,并且速度的方向垂直于两点的连线AB,则速度瞬心必定在连线AB与速度矢vA和vB端点连线的交点C上。 8.3 求平面图形内各点速度的瞬心法ABvBvACABvBvAC (4)某瞬时,图形上A、B两点的速度相等,如图所示,图形的速度瞬心在无限远处。(瞬时平动:此时物体上各点速度相同,但加速度不一定相等) 8.3 求平面图形内各点速度的瞬心法OvAABvB另外注意:瞬心的位置是随时间在不断改变的,它只是在某瞬时的速度为零,加速度并不为零。确定瞬心的一般方法:确定瞬心的一般方法:ABAvBvAAvBBvCCABAvBvCABA
11、vBvABAvBvC例4 用速度瞬心法解例1。解: AB作平面运动1rad ssin30AAvvAClcos3010 3cm sBvBCl210cm sMlvMCAvAvBB30CvMM瞬心在C点例5 已知轮子在地面上作纯滚动,轮心的速度为v,半径为r。求轮子上A1、A2、A3和A4点的速度。A3A2A4A1vA2vA3vA4vO解:很显然速度瞬心在轮子与地面的接触点即A1各点的速度方向分别为各点与A点连线的垂线方向,转向与相同,由此可见车轮顶点的速度最快,最下面点的速度为零。2422AAvvrvovrv10AvO322Avrv459090O1OBAD例6 已知四连杆机构中O1Bl,AB3l/
12、2,ADDB,OA以绕O轴转动。求:(1) AB杆的角速度;(2) B和D点的速度。 解:AB作平面运动,OA和O1B都作定轴转动,C点是AB杆作平面运动的速度瞬心。vAvBvDCAB32 ,23 23 5,24OAlABBClACl DCl2AvOAl2233 22AABvlAClBABvBCl52DABvDCl例7 直杆AB与圆柱O相切于D点,杆的A端以 匀速向前滑动,圆柱半径 ,圆柱与地面、圆柱与直杆之间均无滑动,如图,求 时圆柱的角速度。scmvA60cmr1060 解一:圆柱作平面运动,其瞬心在 点,设其角速度为 。1CrDCvD31 AB圆柱作平面运动,其瞬心在 点,则2CAvAB
13、DO1CDv2CAB22ACvDCvADAB即AADvvrrv3333亦即Avr333故sradrvA2103603例8 图示小型精压机的传动机构,OAO1Br0.1 m,EBBDADl0.4 m,在图示瞬时OAAD,O1BED,O1D在水平位置,OD和EF在铅直位置。已知曲柄OA的转速n120 rpm,求此时压头F的速度。OADO1BEFn例9 图示机构,已知曲柄OA的角速度为,OAABBO1O1Cr,角 = b = 60,求滑块C的速度。解:AB和BC作平面运动,其瞬心分别为C1和C2点,则rOAvA1AABvrACr1BABvBCr2133BBCvrBCr233CBCvCCrbOABO1
14、CC1C2BCABvAvBvC解:连杆AB作平面运动,瞬心在C1点,则12 3cos303AABvrrACABl1sin302 33233BABABvBCABlrrl例10 曲柄肘杆式压床如图。已知曲柄OA长r以匀角速度转动,AB = BC = BD = l,当曲柄与水平线成30角时,连杆AB处于水平位置,而肘杆DB与铅垂线也成30角。试求图示位置时,杆AB、BC的角速度以及冲头C 的速度。AOBDC3030vAvBvCC1ABC2BC连杆BC作平面运动,瞬心在C2点,则233BBCvrBCl233CBCrvCC例11 曲柄连杆机构中,在连杆AB上固连一块三角板ABD,如图所示。机构由曲柄O1
15、A带动。已知曲柄的角速度为2rad/s,曲柄O1A=0.1m,水平距离O1O2=0.05m,AD=0.05m,当O1AO1O2时,ABO1O2 ,且AD与AO1在同一直线上, =30。试求三角板ABD的角速度和点D的速度。解、运动分析:O1A和O2B作定轴转动;ABD作平面运动,其速度瞬心在点C。 O1O2ABDC2ABDvAvDvB10.2 m/sAvO A110.1866 mCACOO A1.072 rad/sAABDvCA0.2366 mCDCAAD0.254 m/sDABDvCD例12 图示蒸汽机传动机构中,已知:活塞的速度为v,O1A1=a1, O2A2=a2, CB1=b1, CB
16、2=b2; 齿轮半径分别为r1和r2;且有a1b2r2a2b1r1。当杆EC水平,杆B1B2铅直,A1,A2和O1,O2都在一条铅直线上时,求齿轮O1的角速度。vA1vA212解:设齿轮O1转动方向为逆时针,则齿轮O2的转动方向为顺时针。因A1,A2和O1,O2在一条铅直线上,所以A1,A2点的速度均为水平方向,如图所示 。因B1B2作平面运动,vCB1B2,由速度投影定理知vB1,vB1也应垂直于B1B2而沿水平方向。A1B1作平面运动,vA1和vB1都沿水平方向,所以A1B1作瞬时平动,同理A2B2也作瞬时平动,所以vB1vB2111111 1BAvvO AavC2222222BAvvO
17、AavA1vB1vB2vA2vC12B1B2杆的速度分布如图所示,速度瞬心在O点。设OC长度为x,则O21 12/r r因齿轮O1,O2相互啮合,1r12r2 ,所以2222 112/Bvaa rrCvvOCx11111 1()BvOBbxbva12211 2 22 1 1()bb r vab ra br22222 112()/BvOBbxbva rr当a1b2r2a2b1r1时,齿轮O1的角速度为逆时针方向。例13 图示放大机构中,杆I和II分别以速度v1和v2沿箭头方向运动,其位移分别以x和y表示。如杆II与杆III平行,其间距离为a,求杆III的速度和滑道的角速度。 IIIIIIIVBC
18、yv1axAv2解:I、II、III杆作平动,IV杆作平面运动。滑块B和滑块C与滑道之间有相对运动,如果取滑道IV作为动参考体分析滑块B和滑块C的运动,则牵连运动均为平面运动。ABIVvB(ve1)vAvAvBAva1vr1hIIIIIIIVBCyv1axAv2B点的运动分析:取滑块B为动点,滑道作为动参考体,绝对运动是滑块B随I杆的运动,速度为va1= v1;相对运动是滑块B在杆滑道中的运动,速度为vr1;牵连运动是杆的平面运动,其速度可用基点法分析得到:取A为基点,分析杆上B点的速度,随基点平动的速度是杆的运动速度v2,相对于基点转动的速度方向垂直于杆,大小未知,由这两个速度合成得到杆上B
19、点的速度vB,此速度即是前面复合运动中的牵连速度ve1,如图所示。 11111eBABAaerABArvvvvvvv= vvv121BAr vvvvvB(ve1)Av1vAvBAva1vr1BIVh向h方向投影得:12cossinBAvvv2222cos, sinxyxyxy1222BAv yv xvxy12IV22BAvv yv xABxy121BAr vvvvACvC(ve2)vAvAvCAva2vr2IIIIIIBCyv1axAv2C点运动分析:取滑块C为动点,滑道作为动参考体,绝对运动是滑块C随杆的运动,速度为va2vIII,大小待求; 相对运动是滑块C在杆滑道中的运动,速度为vr2;
20、 牵连运动是杆的平面运动,其速度可用基点法分析得到:取A为基点,分析杆上C点的速度,随基点平动的速度是杆的运动速度v2,相对于基点转动的速度vCA方向垂直于杆,大小为vCA=AC,由这两个速度合成得到杆上C点的速度vC,此速度即是前面复合运动中的牵连速度ve2,如图所示。 22222eCACAaerACAr vvvvvvvvvvIII22CAr vvvvhvC(ve2)AvAvAvCAva2(vIII)vr2CIII22CAr vvvv向h方向投影得:1212IV2222sinCAv yv xv yv xaavACxyxxyIII2sinsinCAvvvIII2sinCAvvvIII22121
21、2222()sinCAvaayaxvvvv yv xvvxxx因为所以htBAa如图所示。由牵连运动为平动的加速度合成定理,有aer aaa而tnBABABA aaa其中tBAABan2BAABa故tnBABABA aaaa由于牵连运动为平动,所以ae=aA,于是有BABA aaa9.4 用基点法求平面图形内各点的加速度BAaAaBaAnBAaaBA即:平面图形内任一点的加速度等于基点的加速度与相对基点转动的切向加速度和法向加速度的矢量和。这就是平面运动的加速度合成法,称为基点法。tnBABABA aaaatBAaBAaAaBaAnBAaaBA8.4 用基点法求平面图形内各点的加速度解: 如图
22、所示。rS 由于此式对任意时间都成立,故两边对时间求导有ddddOsvrrtt由此可得rvO再对时间求导有2222ddddOsarrtt由此可得Oar例14 求圆轮在地面上作纯滚动时的角速度和角加速度。OOrMMsvOvO 例15 车轮在地面上作纯滚动,已知轮心O在图示瞬时的速度为vO,加速度为aO,车轮半径为r,如图。试求轮缘与地面接触点C的加速度。解:车轮作平面运动,取O点为基点,则C点的加速度为tnCOCOCOaaaa,OOvarrtOCOOaarrar2n22()OOCOvvarrrr取如图的投影轴,将各矢量投影到投影轴上得nCOa0OOCOOCaaaaarvaaOnCOC2hrvaa
23、aOCCC222h方向由C点指向O点。aOCOvOtCOaaOh例16 平面四连杆机构中,曲柄OA长r,连杆AB长l4r。当曲柄和连杆成一直线时,此时曲柄的角速度为,角加速度为,试求摇杆O1B的角速度和角加速度的大小及方向。解:AB作平面运动,由题设条件知,AB的速度瞬心在B点,也就是说,vB = 0,故:OO1AB3030110BO BvO BvA取A为基点分析B点的加速度如图所示:ntntntBBAABABAaaaaaa其中:1n210BOBaOBOO1ABnBAanAanAatAatBanBatAatBAan22221()()4ABAABvraABABrABll n22AaOArtAaO
24、Ar 将加速度向h轴投影得 :ntnncos30cos60BBABAaaaatnn2221()cos6012()452BABAaaarrr 12t21532523BO BrarOBOO1ABnBAanAanAatAatBanBatAatBAah30ABCDO100100vCvB4545例17 平面四连杆机构的尺寸和位置如图所示,如果杆AB以等角速度 = 1 rad/s绕A轴转动,求C点的加速度。 解:AB和CD作定轴转动,BC作平面运动,其B、C两点的运动轨迹已知为圆周,由此可知vB和vC的方向,分别作vB和vC两个速度矢量的垂线得交点O即为该瞬时BC的速度瞬心。由几何关系知 200 mm10
25、0 2 mm,200 2 mmOBBCOCCD0.5rad/sBBCvABOBOB50 2 mm/sCBCvOCBCABCDaB45aBnCBatCBatCanCa80.54取B为基点分析C点的加速度,有 ntnntCCBCBCBa +aaaan22100 mm/sBaABtnn2cos45106.07 mm/sCCBBaaa 将C点的加速度向BC方向投影得:aCn2225 2 mm/sCBBCaBC2n217.68 mm/sCCvaCD负值表明实际方向与假设方向相反。n2t22()()107.5 mm/sCCCaaatnarctan()80.54CCaa 例18 图示曲柄连杆机构中,已知曲柄
26、OA长0.2 m,连杆AB长1m,OA以匀角速度 =10 rad/s绕O轴转动。求图示位置滑块B的加速度和AB杆的角加速度。解:AB作平面运动,瞬心在C点,则2m sAvOA2rad sAABvACOAB45AvA45vBBCAB作平面运动,以A点为基点,则B点的加速度为tnBABABA aaaa其中n2220m sAAaaOAO45AaBBaAa nBAa tBAaAn224m sBAABaAB将B点加速度投影到h轴上得tsin45BABAaaancos45BBAaa25.66m sBa t216m sBAat216rad sBAABaABh将B点加速度投影到轴上得解:薄板作平面运动,取B为
27、基点分析A点的加速度如图所示:例19 图示正方形薄板边长20 mm,在其平面内运动。某瞬时顶点A和B的加速度分别为 和 ,方向如图。求薄板的角速度和角加速度。240 2 mm/sAa 280 mm/sBa DCBAaBaAa nCBa tCBaBntABABAB aaaa其中 :240 2 mm/sAa 280 mm/sBa n2ABaABn2ABaAB将等式两边分别向x和y方向投影得: tcos45ABABaaa n240 222 rad/s20ABaABDCBAxyaBaAa nCBa tCBaBncos45AABaa t228040 222 rad/s20ABaABntABABAB aa
28、aantCBCBCB aaaan2240 mm/sCBaBCt240 mm/sCxCBaa22240 2 mm/sCCxCyaaa再取B为基点分析C点的加速度如图所示将加速度分别向x和y方向投影得:其中方向与CD成45夹角指向右下方。DCBAxyaBaCaBa nCBa tCBaCxaCyt240 mm/sCBaBCn240 mm/sCyCBBaaa 例20 半径r = 1m的轮子,沿水平直线轨道纯滚动,轮心具有匀加速度aC = 0.5 m/s2,借助于铰接在轮缘A点上的滑块,带动杆OB绕垂直图面的轴O转动,在初瞬时(t = 0)轮处于静止状态,当t = 3s时机构的位置如图。试求杆OB在此瞬时的角速度和角加速度。 解:当t=3s时,轮心C的速度0.5 31.5m sCCva t 轮子作平面运动,瞬心在D点,则23m sACvvrCOABvAvCaC45D取滑块A为动点,动系取在OB杆上,动点的速度合成矢量图如图所示。reavvv4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度知识产权许可使用合同(含知识产权名称、许可范围、许可期限等详细条款)
- 2024年度艺术品采购与展览推广合同
- 2024年度健身服务合同之服务内容与会员权益2篇
- 2024年度农产品购销合同:大米、玉米、小麦等粮食作物的供销协议
- 2024年度股权转让的资产评估协议
- 《鼠标键盘使用》课件
- 2024年度虚拟现实应用合同
- 2024年度企业标志设计服务合同范本
- 《审计课堂案例》课件
- 市政道路工程
- 康复治疗技术生涯发展展示
- 《哈腰挂》的音乐手法
- PEEK聚醚醚酮行业报告
- 护理安全与职业防护教案
- 行车记录仪培训课件
- 句型转换-2023年中考英语一模试题汇编(上海)(教师版)
- 隧道工程地质勘察报告
- 继发性糖尿病的护理查房
- 小学科学名师工作室工作计划
- 某年卫生监督协管工作总结
- 高二挑战与突破
评论
0/150
提交评论