版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版八年级(下)第十七章人教版八年级(下)第十七章 勾股定理(勾股定理(1)看一看看一看 相传相传2500年前,一次毕达哥拉斯去朋年前,一次毕达哥拉斯去朋友家作客,发现朋友家用砖铺成的地面反友家作客,发现朋友家用砖铺成的地面反映直角三角形三边的某种数量关系,同学映直角三角形三边的某种数量关系,同学们,我们也来观察下面的图案,看看你能们,我们也来观察下面的图案,看看你能发现什么?发现什么? 相传相传2500年前,毕达哥拉斯有年前,毕达哥拉斯有一次在朋友家里做客时,发现朋一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直友家用砖铺成的地面中反映了直角三角形三边的某种数量关系角三角形三边的某
2、种数量关系 我们也来观察我们也来观察右图中的地面,看右图中的地面,看看有什么发现?看有什么发现?ABCABC(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)图图2-1图2-2(1)观察图)观察图2-1 正方形正方形A中含有中含有 个个小方格,即小方格,即A的面积是的面积是 个单位面积。个单位面积。 正方形正方形B的面积是的面积是 个单位面积。个单位面积。正方形正方形C的面积是的面积是 个单位面积。个单位面积。99918你是怎样得到上面的结你是怎样得到上面的结果的?与同伴交流交流。果的?与同伴交流交流。ABCABC(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位
3、面积)图图2-1图2-2cS正方形143 3182 分分“割割”成若干个直成若干个直角边为整数的三角形角边为整数的三角形(单位面积)(单位面积)ABCABC(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)图图2-1图2-2cS正方形216218(单位面积)(单位面积)把把C“补补” 成边长为成边长为6的的正方形面积的一半正方形面积的一半ABCABC(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)图图2-1图2-2(2)在图)在图2-2中,正中,正方形方形A,B,C中各含中各含有多少个小方格?它有多少个小方格?它们的面积各是多少?们的面积各是多少?(3)你
4、能发现图)你能发现图2-1中中三个正方形三个正方形A,B,C的面积之间有什么的面积之间有什么关系吗?关系吗? SA+SB=SC 即:两条直角边上的正方形面积之和等于即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积斜边上的正方形的面积ABC图图3-1ABC图图3-2分割成若干个直角边为分割成若干个直角边为整数的三角形整数的三角形cS正方形25144 3 12 (面积单位)(面积单位)一般的直角三角形一般的直角三角形三边为边作正方形三边为边作正方形ABC图图3-1ABC图图3-2把把C“补补”成边长为成边长为7的的正方形面积加正方形面积加1单位面单位面积的一半积的一半cS正方形(面积单位
5、)(面积单位)思考:思考:面积面积A,B,C还有上述关系还有上述关系吗?吗?253421449ABC图图3-1ABC图图3-2(1)你能用三)你能用三角形的边长表示角形的边长表示正方形的面积吗?正方形的面积吗?(2)你能发现)你能发现直角三角形三边直角三角形三边长度之间存在什长度之间存在什么关系吗?与同么关系吗?与同伴进行交流。伴进行交流。议一议议一议 ABC图图1-2ABC图图1-32观察右边两个图观察右边两个图并填写下表:并填写下表:A的面积的面积B的面积的面积C的面积的面积图图1-2图图1-3169254913做做 一一 做做利用格纸探究A AB BC Ca ac cb bS Sa a+
6、S+Sb b=S=Sc c 观察所得到的各组数据,你有什么发现?观察所得到的各组数据,你有什么发现?猜想猜想:两直角边两直角边a、b与斜边与斜边c 之间的关系?之间的关系?a a2 2+b+b2 2=c=c2 2a ac cb b 观察所得到的各组数据,你有什么发现?观察所得到的各组数据,你有什么发现?猜想两直角边猜想两直角边a、b与斜边与斜边c 之间的关系?之间的关系?a a2 2+b+b2 2=c=c2 2S Sa a+S+Sb b=S=Sc ca a2 2+b+b2 2=c=c2 2a ac cb b命题命题1 1: 直角三角形两直角边的平方直角三角形两直角边的平方和等于斜边的平方和等于
7、斜边的平方. .勾勾股股弦弦 勾股定理勾股定理( (毕达哥拉斯定理毕达哥拉斯定理) )依据科学理论的证实:依据科学理论的证实: 我国汉代的数学家赵爽指出:四个全等的我国汉代的数学家赵爽指出:四个全等的直角三角形如下拼成一个中空的正方形。直角三角形如下拼成一个中空的正方形。你能用这个图你能用这个图试着证明命题试着证明命题1吗?吗?赵爽弦图赵爽弦图cba 黄黄 实实朱实朱实ab bab bc cab bc cc c2 2b b2 2a2= =+ +赵爽弦图的证法赵爽弦图的证法 c2 =a2+ b2S S大正方形大正方形=S=S小正方形小正方形+4S+4S直角三角形直角三角形C C2 2= =(b-
8、ab-a)2 2+4+4cba黄实黄实朱实朱实 C2=a2-2ab+b2+2abb-acabcabcabcab (a+b)2 = c2 + 4ab/2a2+2ab+b2 = c2 +2aba2+b2=c2大正方形的面积可以表示为大正方形的面积可以表示为 ;也可以表示为也可以表示为(a+b)2c2 +4ab/2 两千多年前,古希腊有个哥拉两千多年前,古希腊有个哥拉 斯学派,他们首先发现了勾股定理,因此斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,定理
9、。为了纪念毕达哥拉斯学派,1955国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前国家之一。早在三千多年前 两千多年前,古希腊有个毕达哥拉斯两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在学派,他们首先发现了勾股定理,因此在国外人们通常称勾
10、股定理为毕达哥拉斯定国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,理。为了纪念毕达哥拉斯学派,1955年年希腊曾经发行了一枚纪念邮票。希腊曾经发行了一枚纪念邮票。 我国是最早了解勾股定理的我国是最早了解勾股定理的国家之一。早在三千多年前,周国家之一。早在三千多年前,周朝数学家商高就提出,将一根直朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即股等于四,那么弦就等于五,即“勾三、股四、弦五勾三、股四、弦五”,它被记,它被记载于我国古代著名的数学著作载于我国古代著名的数学著作周髀算经周髀算经中。中。 在中国古代,
11、人们把弯曲成直角的手臂的上半部在中国古代,人们把弯曲成直角的手臂的上半部分称为分称为 勾勾 ,下半部分称为,下半部分称为 股股 。我国古代学者把直。我国古代学者把直角三角形较短的直角边称为角三角形较短的直角边称为“勾勾”,较长的直角边称,较长的直角边称为为“股股”,斜边称为,斜边称为“弦弦”. .勾勾股股abc勾勾股股1. 1.求下列图中表示边的未知数求下列图中表示边的未知数x x、y y、z z的值的值. .8181144144x xy yz z625625576576144144169169做一做:做一做: P62540026xP的面积的面积 =_X=_X=_24322622x24225B
12、ACAB=_AC=_BC=_251520比比一一比比看看看看谁谁算算得得快!快!2.2.求下列直角三角形中未知边的长求下列直角三角形中未知边的长: :可用勾股定理建立方程可用勾股定理建立方程.方法小结方法小结:8 8x x171716162020 x x12125 5x x11美丽的勾股树美丽的勾股树、如图、如图, ,一个高一个高3 3 米米, ,宽宽4 4 米的大门米的大门, ,需在相需在相对角的顶点间加一个加固木条对角的顶点间加一个加固木条, ,则木条的长则木条的长为为 ( )( )A.3 A.3 米米 B.4 B.4 米米 C.5C.5米米 D.6D.6米米C、湖的两端有、湖的两端有A
13、A、两点,从与、两点,从与A A方向成直方向成直角的角的BCBC方向上的点方向上的点C C测得测得CA=130CA=130米米,CB=120,CB=120米米, ,则则ABAB为为 ( )( )ABCA.50A.50米米 B.120B.120米米 C.100C.100米米 D.130D.130米米130120?A如图,大风将一根木制旗如图,大风将一根木制旗杆吹裂,随时都可能倒下,杆吹裂,随时都可能倒下,十分危急。接警后十分危急。接警后“119”119”迅速赶到现场,并决定从迅速赶到现场,并决定从断裂处将旗杆折断。现在断裂处将旗杆折断。现在需要划出一个安全警戒区需要划出一个安全警戒区域,那么你能
14、确定这个安域,那么你能确定这个安全区域的半径至少是多少全区域的半径至少是多少米吗?米吗?议一议:议一议:9m24m? 1876年年4月月1日,伽菲尔日,伽菲尔德在德在新英格兰教育日新英格兰教育日志志上发表了他对勾股上发表了他对勾股定理的这一证法。定理的这一证法。 1881年,伽菲尔德就任年,伽菲尔德就任美国第美国第20任总统。后来,任总统。后来,人们为了纪念他对勾股人们为了纪念他对勾股定理直观、简捷、易懂、定理直观、简捷、易懂、明了的证明,就把这一明了的证明,就把这一证法称为证法称为“总统证法总统证法”。 无字证明无字证明青出青出朱方朱方青方青方朱入朱入朱朱出出青入青入青青入入青出青出青青出出 abc青出青出朱入朱入朱朱出出朱方朱方青方青方青入青入青青入入青出青出青青出出华罗庚华罗庚青青朱朱出入图出入图朱入朱入朱朱出出对比两个图形对比两个图形, ,你能直接观你能直接观察验证出勾股定理吗
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学初中说课稿
- 好朋友起玩说课稿
- 治疗糖尿病周围神经病变
- 临时行政主管
- 学校园区喷泉施工合同
- 精密仪器公司法务聘用合同
- 体育场馆隔离墙安装合同
- 市政排水工程级配碎石施工合同
- 绿色制造车间环保操作规程
- 2022年大学林业工程专业大学物理下册期中考试试题B卷-附解析
- 工程设计-《工程勘察设计收费标准》(2002年修订本)-完整版
- 隧道专项施工人员培训方案
- 医院员工价值取向培训
- 2024全新煤矿电工培训
- 纸箱厂代加工合作协议书范文
- 人工智能在医疗诊断中的应用与发展趋势研究
- 上海市普陀区2024-2025学年八年级上学期期中物理练习卷
- GB/T 29168.4-2024石油天然气工业管道输送系统用弯管、管件和法兰第4部分:冷弯管
- 2024年农业农村部大数据发展中心第三批面向社会公开招聘7人易考易错模拟试题(共500题)试卷后附参考答案
- 期中测试卷(1-4单元)(试题)-2024-2025学年六年级上册数学人教版
- 实验动物学完整版本
评论
0/150
提交评论