2021-2022学年第二学期福州市高二期中质量抽测--参考答案_第1页
2021-2022学年第二学期福州市高二期中质量抽测--参考答案_第2页
2021-2022学年第二学期福州市高二期中质量抽测--参考答案_第3页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022 学年第二学期福州市高二期中质量抽测数学参考答案及评分细则评分说明:1本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。2对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分。3解答右端所注分数,表示考生正确做到这一步应得的累加分数。4只给整数分数。一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分1B 2A 3C 4A5D 6B 7D 8B二、多项

2、选择题:本题共 4 小题,每小题 5 分,共 20 分9BD 10CD 11ABD 12ACD三、填空题:本大题共 4 小题,每小题 5 分,共 20 分131 14 -11 15 0.1359 167 + 32a+b-2 b -1【第 8 题解析】选项 A:令 a = 0,b = 2 ,得 e + = 0成立,故 A 正确;a -1a+b-2 b -1 b -1选项 B:由 e 0 < 0 ,得 (b -1)(a -1) < 0 ,若b -1> 0 且 a -1< 0 ,+ = 得a -1 a -1得 a <1< b,则 a -3b <1-3

3、0;1= -2 ;若b -1< 0且 a -1> 0,得b <1< a ,则a -3b >1-3´1= -2 ,从而 a -3b = -2不可能成立. B 错误;a+b-2 b -1由 e 0+ =a -1得(a -1)ea-1 = (1-b)e1-b ,令1f (x) = xex ,则 a -1与1-b 可以是方程 f (x) = k( k Î(- , 0) )e的两个根. f ¢(x) = (x +1)ex ,由 f ¢(x) > 0 ,得 x > -1, f (x) 在(-1,+¥) 内单调递增,

4、由 f ¢(x) < 0 ,得 x < -1,f (x) 在(-¥,-1)内单调递减,得1f x f - = - .注意到 lim ( ) 0( ) ( 1) f x = ,故ex®-¥可绘制出 f (x) = xex 的大致图象.根据图象,存在 a -1® -¥ 且1-b ® 0 的情形,此时数学参考答案 (第 1页 共 10页)a ® -¥ ,b ®1,得 a + b < 2, a -b < -2 成立,故 C,D 选项正确.综上所述,选择 B.【第 12 题解析】将

5、表中的数字写成幂的形式,可发现其指数恰好构成“杨辉三角”. C1 = 7 ,故 第 8 行第 2 个数为 27 =128,A选项 A:该数表中第 8 行第 2 个数的指数为7正确;10 10 å å 1 45 ,B 错误;选项 B:根据数表a = 2i- ¹ 2i,2i=2 i=2选项 C:该数表中第 9 行的奇数项的指数之和为C +C +C +C +C = 2 ;偶数项0 2 4 6 8 7 8 8 8 8 8的指数之和为 C +C +C +C = 2 ,故第 9 行的奇数项之积等于偶数项之积,C 正确;1 3 5 7 7 8 8 8 8选 项 D : 假 设

6、存 在 , 由log a : log a + : log a + = 3:4:5 得2 63, j 2 63, j 1 2 63, j 2C 3j-162=C 4j62,C 4j62 =j+ ,即1C 5624´62! 3´62!=( j -1)!(63- j)! j!(62- j)!且5´62! 4´62!=j!(62- j)! ( j +1)!(61- j)!,化 简得4 3 =63- j j且5 4 =62- j j +1,得 j = 27 ,故 D 正确.综上所述,选 ACD.【第 16 题解析】不妨设 P 点在第二象限, C 的左、右焦点分别为

7、 F1,F2 .如图,由于| AB |= 2 | PQ |= 4c ,由对称性可得| DQ |= c ,过点 Q 作 x 轴的垂线,可得垂足为 C 的右焦点F .在直角三角形2QF O 中2|QF |= | OQ | -| OF | = 4c -c = 3c ,则在直角三角 2 2 2 22 2形QF F 中2 1| QF |= | QF | + | F F | = 3c + 4c = 7c .2 2 2 21 2 1 2根 据 双 曲 线 的 定 义 可 知| QF | -| QF |= 2a , 即1 27c - 3c = 2a ,则离心率 ec 2 7 + 3= = =a 7 - 3 2

8、.数学参考答案 (第 2页 共 10页)四、解答题:本大题共 6 小题,共 70 分17. 【考查意图】本小题考查利用导数研究函数的单调性、极值、最值等基础知识;考查抽象概括能力、运算求解能力;考查化归与转化思想、数形结合思想;考查数学建模、数学抽象、直观想象、数学运算等核心素养;体现基础性.【解析】(1) ( ) ( )f ¢ x = 3 x2 - 2x - 3 ,··················&#

9、183;········································· 1 分由 f ¢(x) > 0得 x < -1或 x > 3, 由 f

10、 ¢(x)< 0得 -1< x < 3,························4 分所以 f (x)的单调递增区间为(-¥,-1)和(3,+¥),f (x)的单调递增区间为(-1, 3).·········

11、83;·················································

12、83;··· 6 分(2)令 f ¢(x) = 0得 x = -1或 x = 3,········································

13、;··············· 7 分由(1)可列下表x -2,-1) -1 (-1, 3) 3 (3, 4f ¢ x + 0 - 0 +( )f x 单调递增 取极大值 单调递减 取极小值 单调递增( )注:上述表格没有列出,不扣分.由于 f (-2)= -1, f (-1)= 6, f (3) = -26 , f (4) = -19 ,········

14、·············· 9 分得 f (x)在区间-2, 4上的最大值为 6 ,最小值为 -26.·····························

15、3;· 10 分18. 【考查意图】本小题考查主要考查数列的通项与前 n项和的关系式、等差数列的通项公式、裂项相消法求和等基础知识;考查运算求解能力;考查化归与转化思想、分类与整合思想;考查数学建模、数学抽象、数学运算等核心素养;体现基础性.【解析】(1)当 n =1时,由 1 14S -1= a2 + 2a 得 24a -1= a + 2a , a = .···· 1 分 n n n 1 1 1当 n 2时,由 4S -1= a2 + 2a 得 2 4S 1 a 2a- - = - + - , n n n n 1 n 1 n 1两式相减可得

16、4a = a + 2a - a - 2a ,2 2n n n n-1 n-1化简得( 1 )( 1 2) 0a + a a - a - = ,······································&

17、#183;················ 4 分n n- n n-a + a 1 > 0 ,故由条件得n n-a a= 1 + 2 ,·························

18、;························· 5 分n n-数学参考答案 (第 3页 共 10页)得数列a 是以1为首项, 2 为公差的等差数列,················&#

19、183;······················· 6 分n从而数列 a 的通项公式为 a = 2n -1.·····················

20、83;······························· 7 分n n(2)由(1)得 a = 2n -1,n所以1 1 1 æ 1 1 ö= = ç - ÷a a n n n n(2 -1)(2 +1) 2 è 2 -1 2

21、+1 øn n+1,································· 9 分得1 1 1 1 æ 1 ö 1 æ1 1 ö 1 æ 1 1 ö+ + + = ç1- 

22、47;+ ç - ÷+ + ç - ÷L La a a a a a 2 3 2 3 5 2 2n -1 2n +1è ø è ø è ø 1 2 2 3 n n+11 æ 1 1 1 1 1 ö= ç1- + - +L+ - ÷2 3 3 5 2n -1 2n +1è ø1 æ 1 ö= ç - ÷12 2n +1è ø=n2n +1.···

23、83;················································ 12 分19.

24、【考查意图】本小题主要考查空间直线与直线、直线与平面的位置关系,平面与平面的夹角等基础知识;考查推理论证能力、运算求解能力与空间想象能力;考查数形结合思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性、综合性【解析】(1)因为平面 AED 平面 BCDE ,平面 AED I 平面 BCDE = DE ,BE DE , BE Ì 平面 BCDE ,所以 BE 平面 AED ,·················

25、············· 2 分因为 AE Ì 平面 AED ,所以 AE BE ,·······························&

26、#183;·····················3 分因为 AE BD , BD I BE = B , BD, BE Ì 平面 BCDE ,所以 AE 平面 BCDE .·················&

27、#183;·················································&

28、#183;········································ 4 分(2)因为 AE 平面 BCDE , BE DE ,所以 BE,DE, AE 两两互相垂直,以 E 点

29、为原点, EB, ED, EA所在直线为 x 轴、 y 轴、 z 轴,建立空间直角坐标系.·········5 分得各点坐标分别为: A(0,0, 2)、 B(2, 0, 0) 、C(2,1, 0) 、 D(0, 2, 0) ,··············· 6 分得 BA = (-2, 0, 2) , BC = (0,1, 0), BD = (-2, 2,

30、 0) .·····································7 分数学参考答案 (第 4页 共 10页)设 平 面 CAB 的 一 个 法 向 量 为u = (x , y , z ) , 由 BA×

31、;n = 0 , BC ×n = 0 , 得1 1 1ì-2x + 2z = 0,1 1íy = 0,î1令 x1 =1得 y1 = 0 ,z = ,从而u = (1, 0,1) .··························8 分1 1设 平 面 ABD 的 一 个 法 向 量 为v =

32、(x , y , z ) , 由 BA×v = 0 , BD×v = 0 , 得2 2 2ì-2x + 2z = 0,2 2í-2x + 2y = 0,î2 2令 x2 =1得y = ,2 1z = ,从而 v = (1, 1, 1) .························· 9 分2

33、1r rcos u,vu ×v 2 2 6= r r = = = ,···········································

34、83;··· 11 分u × v 2 ´ 3 33所以平面CAB 与平面 DAB 夹角的余弦值为63.·····································&#

35、183;···· 12 分20.【考查意图】本小题主要考查离散型随机变量的分布列、期望、推断与决策等基础知识;考查推理论证能力、运算求解能力与创新意识;考查化归与转化思想;考查数学建模、逻辑推理、数据分析等核心素养,体现综合性、应用性与创新性【解析】:(1) X 的可能取值为 0,1, 2,3, 4.1 1 1 1 1高二 1 班答对某道题的概率 = ´ + ´ = ,··············

36、·························· 2 分2 2 2 6 3则k 4-kæ 1 öæ1ö æ 2 öX : B 4, , ( ) ( )kP X k C k 0,1, 2,3, 4= = ç ÷ ç ÷ =ç &

37、#247;è ø 3 334è ø è ø.···················3 分则 X 得分布列为X 0 1 2 3 4P16813281827881181···············

38、83;·················································

39、83;·········································5 分数学参考答案 (第 5页 共 10页)1 4E X = 4´ = .·

40、83;·················································

41、83;··························6 分 则 ( )3 31 1 1 1 1(2)高二 1 班答对某道题的概率为 = ´ + p = + p ,·············

42、83;········· 8 分2 2 2 4 2æ 1 1 ö 3 p答错某道题的概率为 -ç + p÷ = -1è ø4 2 4 2.··························

43、····················· 9 分4æ 3 p ö 80则1-ç - ÷ ,解得è ø4 2 8156 ,·················&#

44、183;································ 11 分p <1所以 p 的最小值为56.·············&

45、#183;·················································&

46、#183;·············12 分21.【考查意图】本小题主要考查导数的几何意义、导数的应用等基础知识;考查抽象概括能力、推理论证能力、运算求解能力与创新意识,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想;考查数学抽象、直观想象、逻辑推理、数学运算等核心素养,体现综合性、应用性与创新性【解析一】(1) f ¢(x) = ln x +1, f ¢(1) =1,·····

47、······································· 2 分又 f (1) = 0,········&#

48、183;·················································&#

49、183;·····························3 分故 f (x)的图象在点(1,0)处的切线方程为 y = x -1.··············&

50、#183;·······················4 分(2)当 x1,令 ( ) ( )2g x = x ln x -a x -1 ,得 g (1) = 0, g¢(x) = ln x +1- 2ax ,············&#

51、183;·········································· 5 分 1 1-2ax令 h(x) = ln x +1- 2ax ,则 ¢(

52、 ) = - = .·································· 6 分 x xh x 2a若 a 0时,得 h¢(x) > 0,则 g¢(x)在1,+¥)上单调递增,故 g¢(x) g&#

53、162;(1) =1- 2a 0 ,所以 g (x)在1,+¥)上单调递增,所以 g (x) g (1) = 0 ,从而 ( )x x -a x - ,不符合题意;···································

54、83;·············· 7 分ln 1 02若 a > 0 ,令 h¢(x) = 0,得x 1= . 2a()若 01< a < ,则212a>1,当æ 1 öxÎç ÷1,è ø2aæ 1 ö时, h¢(x) > 0, g¢(x)在 1, 上上ç ÷è ø

55、2a数学参考答案 (第 6页 共 10页)é 1 ö单调递增,从而 g¢(x) > g¢(1)=1- 2a > 0 ,所以 g (x)在1,在单调递增,此时 ÷êë ø2ag (x) g (1) = 0 ,不符合题意;························&

56、#183;····································· 9 分1 1 a ,则 < ,h¢(x) 0 在1,+¥)上恒成立,所以 g¢(x)在1,+¥)(

57、)若 0 12 2a上单调递减, g¢(x) g¢(1) =1- 2a 0 ,从而 g (x)在1,+¥)上单调递减,所以g x g = ,所以 x x -a(x2 - ) 恒成立.································&#

58、183;·11 分( ) (1) 0ln 1 0综上所述, a 的取值范围是é1 ö,+¥÷êë ø2.··································

59、3;···················· 12 分【解析二】(1)同解析一.··························

60、3;··············································4 分(2)由 ( )f x ax -a 得

61、 xln x ax2 -a ,即 ln2ax ax - .······················· 5 分x a 2g x ax x g¢ x = a + - = .········6 分 x x x xa 1 ax - x +a令 ( ) = - - ln ,得 g (1

62、) = 0, ( )2 2当 a 0时,由 x1得 xln x0 , ax2 -a = a(x2 -1) 0 ,此时 f (x) ax -a2不恒成立;·····································&#

63、183;·················································&#

64、183;····8 分当 a > 0 时,方程 ax2 - x + a = 0 的判别式 D =1- 4a2 .1()若1- 4a2 0 ,即 a ,可得 ax2 - x + a 0,g¢(x) 0 ,得 g (x)在1,+¥)2a上单调递增,从而 g (x) g (1) = 0 , - ln 成立. ···················&

65、#183;·········9 分ax xx 1()若1- 4a2 > 0 ,即 0 h x = ax - x + a( xÎR ),由 于 h(0) = a > 0 ,< < ,令 ( ) 2a2æ 1 öh(1) = 2a -1< 0 ,h a= >ç ÷è øa0æ 1 ö,由零点存在定理得 h(x)在1,ç ÷è øa内存在唯一零点a

66、 ,则当 xÎ1,a ), h(x)< 0,即 g¢(x)< 0,此时可得 g (x) g (1) = 0 ,与题设0 0条件不符,舍去. ···································

67、3;··············································11 分综上所述, a 的取值范围是

68、3;1 ö,+¥÷êë ø2.··········································

69、83;············ 12 分数学参考答案 (第 7页 共 10页)22.【考查意图】本小题主要考查椭圆的图象和性质、直线和椭圆的位置关系等基础知识;考查推理论证能力、运算求解能力;考查函数与方程思想、数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性、综合性与创新性x y2 2【解析一】(1)由条件得 F 坐标为(-2, 0) ,设 P 点坐标为 (x , y ) ,得 0 + 0 =1,0 016 12x2y = - .

70、3;·················································

71、3;··································1 分0 12(1 )2 016x 12PF = (x + 2) + y = (x + 2) +12(1- ) = x + 4x +162 2 2 0 20 0 0 0 016 41 1=

72、 ( x + 4) = x + 4 ,···············································

73、;··········· 3 分20 02 21 1因为 4 x 4 2 x + 4 6 | | 4 2- ,所以 ,得 PF = x + .·················4 分0 0 02 2说明:此处如果直接套用二级结论,没有详细过程,仅给 1 分.(2)设E(x , y ) ,G(x , y ) .1 1 2

74、 2 当 直 线 EG 的 斜 率 不 存 在 时 , 点 E,G 关 于 x 轴 对 称 ,k k 互 为 相 反 数 ,1, 2k1 + k2 = 0 ¹ 1,与条件矛盾. ··································&#

75、183;·······························5 分当直线 EG 的斜率存在时,设直线 EG 方程为 y = kx +t ,将其与椭圆方程联立,得ì x y2 2ï + =1,í16 12ï = +y kx t,î消

76、去 y 得 (4k2 +3)x2 +8ktx + 4t2 -48 = 0 ,则8ktx + x = - ,1 2 24k +34t - 482x x =1 2 24k +3.···································

77、83;················································6 分由y y k

78、x +t kx +tk + k = 得 1 + 2 = 1 + 2 =1 2 1x + 4 x + 4 x + 4 x + 41 2 1 21, 去 分 母 整 理 得(2k -1)x x + (4k +t - 4)(x + x ) +8t -16 = 0 ,····························&#

79、183;············7 分1 2 1 2从 而4t - 48 8kt2(2k -1) + (4k +t - 4)(- )+8t- 16=4k + 3 4k + 32 20, 去 分 母 整 理 得数学参考答案 (第 8页 共 10页)t2 - (8k + 6)t + 4k(4k + 6) = 0 ,即 (t - 4k)t -(4k + 6)= 0 ,得t = 4k 或t = 4k + 6 .······&

80、#183;·················································&

81、#183;·················································&

82、#183;9 分若 t = 4k ,则直线 EG 方程为 y = kx + 4k ,即 y = k(x + 4) ,可知直线 EG 恒过定点(-4, 0) ,与题设条件不符,舍去.···································

83、························· 10 分若t = 4k + 6 ,则直线 EG 方程为 y = kx + 4k + 6,即 y = k(x + 4)+ 6 ,可知直线 EG恒过定点 (-4, 6) .···········

84、;··················································

85、;·····················11 分综上,可得直线 EG 恒过定点,定点坐标为 (-4, 6) .·······················

86、·············12 分【解析二】(1)由条件得 F 坐标为 (-2, 0) ,设 P 点坐标为 (4 cosq,2 3 sinq)(q 为参数),··························

87、··················································

88、···················· 1 分PF = (4 cosq + 2) + (2 3 sinq) = 16 cos q +16 cosq + 4+12sin q2 2 2 2= 4 cos q +16 cosq +16 = 2 (cosq + 2) = 2 | cosq + 2 | ,········

89、83;····· 3 分2 2因为| cosq + 2 |= cosq + 21,所以| PF | 2 .·····································

90、······ 4 分说明:此处如果直接套用二级结论,没有详细过程,仅给 1 分.(2)设E(x , y ) ,G(x , y ) .1 1 2 2当直线 EG 的斜率为0 在时,点 E,G 关于 y 轴对称,得x = -x y = y ,2 1, 2 1y y 8y 8yk + k = + = = =1 1 1 11 2 2x + 4 -x + 4 (4- x )(4+ x ) 16- x1 1 1 1 1x y2 21,又1 + 1 =1,则16 12y x - x y1 1 16 1 8 12 2 2=1- = = ,解得12 1

91、6 16 16y1 = 6 ,得此时直线 EG 方程为 y = 6. ····· 5 分当直线 EG 的不为 0 时,设直线 EG 方程为 x = my +t ,将其与椭圆方程联立,得ì x y2 2ï + =1,消去 x 得 (3m + 4)y +6mty +3t -48 = 0 ,则2 2 2í16 12ï = +x my t,î6mty + y = -1 2 23m + 4,3t - 482y y = .·······&#

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论