版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第4讲二次函数性质的再研究与幂函数讲二次函数性质的再研究与幂函数1.二次函数(1)二次函数解析式的三种形式:一般式:f(x)_.顶点式:f(x)a(xm)2n(a0),顶点坐标为_.零点式:f(x)a(xx1)(xx2)(a0),x1,x2为f(x)的零点.(2)二次函数的图像和性质ax2bxc(a0)(m,n)解析式f(x)ax2bxc(a0)f(x)ax2bxc(a0时,图像过原点和(1,1),在第一象限的图像上升;当0,二次函数f(x)ax2bxc的图像可能是()(2)(2017武汉模拟)若函数f(x)(xa)(bx2a)(常数a,bR)是偶函数,且它的值域为(,4,则该函数的解析式f
2、(x)_.答案(1)D(2)2x24考点三二次函数的应用(多维探究)命题角度一二次函数的恒成立问题【例31】 已知二次函数f(x)ax2bx1(a,bR),xR.(1)若函数f(x)的最小值为f(1)0,求f(x)的解析式,并写出单调区间;(2)在(1)的条件下,f(x)xk在区间3,1上恒成立,试求k的取值范围.答案B规律方法(1)对于函数yax2bxc,若是二次函数,就隐含着a0,当题目未说明是二次函数时,就要分a0和a0两种情况讨论.(2)由不等式恒成立求参数的取值范围,常用分离参数法,转化为求函数最值问题,其依据是af(x)af(x)max,af(x)af(x)min.(3)涉及二次函
3、数的零点常与判别式有关,常借助函数的图像的直观性实施数形转化.【训练3】 (1)(2016九江模拟)已知f(x)x22(a2)x4,如果对x3,1,f(x)0恒成立,则实数a的取值范围为_.(2)(2017枣庄一模)已知函数f(x)是定义在R上的偶函数,当x0时,f(x)x22x,如果函数g(x)f(x)m(mR)恰有4个零点,则m的取值范围是_.思想方法1.幂函数yx(R)图像的特征0时,图像过原点和(1,1)点,在第一象限的部分“上升”;0时,图像不过原点,经过(1,1)点在第一象限的部分“下降”,反之也成立.2.求二次函数的解析式就是确定函数式f(x)ax2bxc(a0)中a,b,c的值.应根据题设条件选用适当的表达形式,用待定系数法确定相应字母的值.3.二次函数与一元二次不等式密切相关,借助二次函数的图像和性质,可直观地解决与不等式有关的问题.4.二次函数的单调性与对称轴紧密相连,二次函数的最值问题要根据其图像以及所给区间与对称轴的关系确定.易错防范1.幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像最多只能同时出现在两个象限内;如果幂函数图像与坐标轴相交,则交点一定是原点.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC/IEEE 8802-1AE:2020/Amd 4:2024 EN Telecommunications and exchange between information technology systems - Requirements for local and metropolitan area networks - Par
- 2024年度山西省高校教师资格证之高等教育心理学题库检测试卷B卷附答案
- 2023年激光诊断设备资金筹措计划书
- 福建省泉州市高一上学期期末英语试题与参考答案
- 小学幼儿园智慧监控系统方案建议书
- 2024奶牛养殖基地施工承包协议
- 2024暑期工勤工俭学劳动协议示例
- 2024年借款居间协议格式样本
- 2024年度采石场租赁运营权转移协议
- 2024陶瓷烧制加工承揽协议
- 高校实验室管理员工作总结
- JBT 14615-2024 内燃机 活塞运动组件 清洁度限值及测定方法(正式版)
- 2024年保密知识测试试题库(综合题)
- 《做个加法表》名师课件
- 个人与公司签订的销售提成协议
- 危险性较大的分部分项安全管理核查表
- 2024年纪检监察综合业务知识题库含答案(研优卷)
- 第8课《用制度体系保证人民当家做作主》第2框《我国的基本政治制度》课件 2023-2024学年 中职高教版(2023)中国特色社会主义
- 2024年入团积极分子结业考试试题
- 供应室消防应急预案演练
- 潮湿相关性皮炎的护理
评论
0/150
提交评论