




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1Main Contents:1 Discrete-Time Signals2 Typical Sequences and Sequences Representations3 Discrete-Time Systems4 Linear Time Invariant(LTI) Systems5 Classification of LTI Discrete-Time SystemsChap 2 DT-Signals & DT Systems21. Discrete Time SignalsA. Time-Domain Representation Signals represented
2、as sequences of numbers,called samples and their values , denoted asSequence ,(). ,0.95, 0.2,2.17,1.1,s:0.2, 3.67,2.9,x nnx n 3TSamples:sampling int (ervalsampling fr), 2, 1,e0,1,2,T, que. F1cy/n, at nTx nx tnT1. Discrete Time Signals ,if 0. .: cosReal sequ(0.25 )ence.s:reimimx nxnjxnxne gx nn0.3 Co
3、mplex sequ .ence.: .s:reimjnx nxnjxne gx ne4B. Operations on SequencesDiscrete-time system Input sequencexn Output sequencey n(a) Product(modulation) (b) Scaling (amplification, attenuation) y nw n x ny nax n x n wn y na xn yn512(c) Sum and difference (d) Ideal delay(Time-shifting) - y nx n x ny nx
4、n d 1 x n2 x n y n xn ynZ-dB. Operations on Sequences61234Combination of elementary operation(e) 123sy nx nx nx nx nB. Operations on Sequences7(f) :Ensemble averaging11 , where . KiaveiiiixxxsdKsddat a, noi s e Let actual uncorrupted data, denote the noise vector corrupting the i-th measurement.isd
5、A very simple application of addition operation in improvingquality of measured data corrupted with additive noise. B. Operations on Sequences8B. Operations on Sequences9(g) Sampling rate alte ration: x n uxn L / , 0, 2 , 0, .ux n LnLLx notherwise if R=L1, inserting L-1 zero-valued samples between t
6、wo consequence samplUp-es samplinofg: . x ninterpolati If 1,called . 1,called ondecimatio . nRR Sampling rate alteration ratio is R=/.TTFF Employed to generate a new sequence with a sampling rate higer or lower than that of the sampling rate of a given sequence TTy nFFx n.B. Operations on Sequences1
7、0Up-samp g linB. Operations on Sequences11 1 if R=1, keeping every M-th sample,M and removing M-1 samples in-between samDownples-sampling of : .x n x n y n MB. Operations on Sequences12l On Symmetry: Conjugate-symmetric or Conjugateantisymmetric sequencesC. Classification of Sequences Any real seque
8、nce xn can be divided into even part and odd part , where 2 2eoeox nx n x n, x nx nx -n/ ;x nx nx -n/ . (a) the real even sequence: , for all (b) the real odd sequence: , for alleeoox nx -n nx n-x -n n13(c) the conjugate symmetric sequence: , for all(b) the conjugate anti-symmetric sequence: , for a
9、llcscscaca xnx-n nxn-x-n nAny complex sequence can be divided into the conjugatesymmetric and the conjugate anti-symmetric parts: 2 cscacscax n x nxn xn ,where xnx nx -n/ ; xnx nx2-n/ .C. Classification of Sequences14l On Periodicity Periodic or aperiodic sequencesl On Energy or Power Bounded or unb
10、ounded sequences for all x nx Nn n2 ,bounded sequenceIf , absolutely-summable.If , square-summable.xnnx nBx nx nx nx nC. Classification of Sequences15sin , - Square-summable but not absolutely-sum. .m bl:a e. caengx nnn sin, - Neither square-summable nor absolutely-summable. bcx nnn C. Classificatio
11、n of Sequences162. Typical Sequences0 1,01) Unit sample: 0,1,02) UnitA. Some Basic Se step : quences0,3) Sinusoidal sequence : sin:x nnnotherwisenu notherwise nnunnx 174) Exponential sequence: na5) Rect. sequence NRnu nu nN:N-1n NR n2. Typical Sequences18-Analysis of signal: B. Representation of an
12、Arbi trary Sequencekx nx kn-k. .: 0.5 2 1.5 120.75 6e gx nnnnn2. Typical Sequences19 3. Discrete Time SystemsA. Definition and examples nyTnx It is a transformation or operator that maps an inputsequence into an output sequence. y nT x n201. .: 1 Accumulato.rnnlle gy nx lx lx ny nx n3. Discrete Time
13、 Systems0or, = -1 where -1 is the initial condition of a causal systennly nyx ly21101Moving average filter: Mly nx nlMTime index n Time index nSuppose , where 2 (0.9) nx ns nd ns nnd ns i gnal ,noi s e.3. Discrete Time Systems22 where 2 (0.8) ns nnd ns i gnal ,noi s e. s n s nd n 3M 10M 231 F n+(n-1
14、+ n+1 ),2actor of 2 interpolatoruuuy nxxx xn ux n L DT yn Linear interpolator 12 n+(n-1+ n+2 )+(n-2+ n+1 )33Factor of 3 interpolatoruuuuuy nxxxxx3. Discrete Time Systems24Factor of 2 interpolator3. Discrete Time Systems25Factor of 4 interpolatorLi near i nt er pol at i on3. Discrete Time Systems2612
15、122(a) : e.g. Moving average system, but not Linear sy stemT ax nbx naT x nbT x nT x nx nB. Classification of Discrete-Time Systems(b) : e.g. Moving average system, but ninotShif dowvariant nsampling system syste t-mT x ny nT x ndy ndy nx Mn3. Discrete Time Systems27(c) : only deponds on values , Ca
16、usal or, 0, 0systemy nx k knh nfor nk -(d) : . () B i.e.Stable syste mI BOx ny nh k (e) :Linear Time-InvarianLTI Syt Sysstemtem 3. Discrete Time Systems28the response to a unit sample sequence .Determination of theImpulse resp impulse resonse:ponse.nC. Impulse and Step Response123Consider an LTI DT
17、system with an input-output relation 12.y nx nx nx n123123Let , then . : 12., ,02.x nny nh nieh nnnnorh nn the impulse response of the accumulator SStep respo . nse:nlnh l3. Discrete Time Systems294. Time-Domain Characterization of LTI DTS A. Input-Output Relationship kx nx knksignalanalysis by line
18、arity by timeinvariancekkky nT x nTx knkx k Tnkx k h nk- sum theimpulse response of the LTIsystconvolutioenm.y nx nh nh n- -30 Calculation of the Convolution S: For eam:uchky nx k h nkn(a) reverse h khk(b) delay bysamples,. ., ()hkniehknh nk(c) multiply the sequences and sum the results.x kwith h nk
19、4. Time-Domain Characterization of LTI DTS 314. Time-Domain Characterization of LTI DTS 324. Time-Domain Characterization of LTI DTS 334. Time-Domain Characterization of LTI DTS 344. Time-Domain Characterization of LTI DTS 354. Time-Domain Characterization of LTI DTS 364. Time-Domain Characterizatio
20、n of LTI DTS 374. Time-Domain Characterization of LTI DTS 384. Time-Domain Characterization of LTI DTS 394. Time-Domain Characterization of LTI DTS 404. Time-Domain Characterization of LTI DTS 414. Time-Domain Characterization of LTI DTS 42i.e.: .nSh n B. Stability condition in terms of the impulse
21、response absolutely-summable,iff h n .kkxxky nh k x nkh kx nkBh kB S where, . So the system is BIBO stablexx nB 4. Time-Domain Characterization of LTI DTS 43000 the output sample depends only on input sa Causal symples st for em:.nthy nx nnnC. Cusality condition in terms of the impulse response1212
22、Let and be the responses of a causal DT system to the inputs and , respectively.y ny nx nx n1212 Then = for implies also that = for .x nx nnNy ny nnN In a causal system, changes in output samples do not precede the changes in the input samples.4. Time-Domain Characterization of LTI DTS 44D. Linear c
23、onstant coefficient difference equationThe representation of the LTI systems in the time domainthe -th-order linear constant coefficient difference equation:N00 can be determined based on initial conditions; if initial rest, corresponding system is LTI and causal.Initial rest: If 0,for ,then 0, for .y nNx nnny nnn0001 or NMk
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版土地使用权入股协议书
- 二零二五版就职保密协议
- 离婚后抚养费小孩协议书
- 厨师聘用协议范例
- 二零二五导演聘用合同范文
- 二零二五版学校食堂炊事员聘用协议书
- 食品清仓超市管理制度
- 虚拟技术团队管理制度
- 车间安全纪律管理制度
- 通信工厂车间管理制度
- 浆砌片石挡土墙施工工艺-
- 人教版小学四年级数学下册《第三单元 运算律》大单元整体教学设计2022课标
- 人美版初中美术八年级下册教案 全册
- 财务管理委托代理会计服务 投标文件(技术方案)
- GA 2139-2024警用防暴臂盾
- 重庆医药卫生学校入学考试数学试题
- 一年级综合实践《认识安全标志》第一课时说课稿
- 北师大版四年级下册小数乘法竖式计算200题及答案
- DL∕T 5161.17-2018 电气装置安装工程质量检验及评定规程 第17部分:电气照明装置施工质量检验
- 金蝉养殖注意事项及常见病虫害防治
- SL-T+62-2020水工建筑物水泥灌浆施工技术规范
评论
0/150
提交评论