矩阵低秩分解理论_第1页
矩阵低秩分解理论_第2页
矩阵低秩分解理论_第3页
矩阵低秩分解理论_第4页
矩阵低秩分解理论_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、矩阵低秩分解理论及其应用分析矩阵低秩分解理论及其应用分析成科扬2013年9月4日从稀疏表示到低秩分解 稀疏表示压缩感知(Compressed sensing)从稀疏表示到低秩分解 矩阵低秩分解 矩阵低秩稀疏分解(Sparse and low-rank matrix decomposition) 低秩矩阵恢复(Low-rank Matrix Recovery) 鲁棒主成分分析(Robust principle component analysis, RPCA) 低秩稀疏非相干分解(Rank-sparsity incoherence)observationlow-ranksparse预备知识低秩矩

2、阵恢复(鲁棒主成分分析RPCA) 在许多实际应用中,给定的数据矩阵往往是低秩或近似低秩的,但存在随机幅值任意大但是分布稀疏的误差破坏了原有数据的低秩性,为了恢复矩阵的低秩结构,可将矩阵分解为两个矩阵之和,即,其中矩阵和未知,但是低秩的。当矩阵的元素服从独立同分布的高斯分布时,可用经典的PCA来获得最优的矩阵,即求解下列最优化问题: 当为稀疏的大噪声矩阵时,问题转化为双目标优化问题: 引入折中因子,将双目标优化问题转换为单目标优化问题:RPCA的求解 凸松弛NP难问题松弛后矩阵核范数迭代阈值算法(iterative thresholding,IT)将最优化问题正则化,便得到优化问题:优化问题式的

3、拉格朗日函数为使用迭代阈值算法交替更新矩阵,和。当=k,=k时,当k+1,k时,当k+1 ,k+1时,其中:步长k满足 k 1算法的迭代式形式简单且收敛,但它的收敛速度比较慢,且难以选取合适的步长加速近端梯度算法(accelerated proximal gradient,APG)将优化问题式的等式约束松弛到目标函数中,得到如下的拉格朗日函数: 记于是L(,)=(,)+(,)。函数(,)不可微,而(,)光滑且具有李普希兹连续梯度,即存在Lf0,使得 其中: 表示函数(,)关于矩阵变量和的梯度。此处取Lf =。对于给定的与同型的两个矩阵A和E,作(,)的部分二次逼近:加速近端梯度算法(accel

4、erated proximal gradient,APG)为了得到更新A和E时的步长,需先确定参数k+1:于是A和E的迭代更新公式为:参数的迭代公式为其中: 为事先给定的正数;0。尽管与算法类似,但它却大大降低了迭代次数。 由于核范数的对偶范数为谱范数,所以优化问题的对偶问题为: 其中: 表示矩阵元素绝对值最大的值。当优化问题对偶式取得最优值 时,必定满足 即此优化问题等价于: 上述优化问题是非线性、非光滑的,可以使用最速上升法求解。当 时,定义正规锥 其中 表示函数(.)的次梯度。此时,优化问题的最速上升方向为k,其中k为在(k)上的投影。使用线性搜索方法确定步长大小: 于是k的更新过程为

5、DULL比APG算法具有更好的可扩展性,这是因为在每次迭代过程中对偶方法不需要矩阵的完全奇异值分解。对偶方法(DUL)增广拉格朗日乘子法(augmented Lagrange multipliers,ALM)构造增广拉格朗日函数:当k, k ,使用交替式方法求解块优化问题 min , (,k, k )。使用精确拉格朗日乘子法交替迭代矩阵和,直到满足终止条件为止。若 则交替方向方法(alternating direction methods,ADM,IALM) ADM对ALM做了改善,即不精确拉格朗日乘子法(inexactALM它不需要求 的精确解,即矩阵和的迭代更新公式为:求解方法性能比较低秩

6、矩阵恢复应用 图像恢复低秩矩阵恢复应用 图像去光照影响恢复低秩矩阵恢复应用 视频背景建模Cands, Li, Ma, and W., JACM, May 2011.低秩矩阵恢复应用 图像类别标签净化低秩矩阵恢复应用 文本主题分析传统PCARPCA低秩矩阵恢复应用 音乐词曲分离低秩矩阵恢复应用 图像矫正与去噪低秩矩阵恢复应用 图像对齐低秩矩阵补全 当数据矩阵含丢失元素时,可根据矩阵的低秩结构来恢复矩阵的所有元素,称此恢复过程为矩阵补全()。 记为集合的子集,这里表示集合,。的原始模型可描述为如下的优化问题: 其中: 为一线性投影算子,即 为便于优化,凸松弛后转化为:低秩矩阵补全求解 问题可应用算

7、法求解,将原优化问题重新表示为:于是构造上述问题的部分增广拉格朗日函数为低秩矩阵补全应用 智能推荐系统低秩矩阵补全应用 电影去雨线处理低秩矩阵表示(LRR) 低秩矩阵表示(LRR)是将数据集矩阵表示成字典矩阵(也称为基矩阵)下的线性组合,即,并希望线性组合系数矩阵是低秩的。为此,需要求解下列优化问题: 为便于优化,凸松弛后转化为: 若选取数据集本身作为字典,则有 那么其解为 ,这里 是D的SVD分解。 当D是从多个独立子空间的采样组合,那么 为对角块矩阵,每个块对应着一个子空间。此即为子空间聚类(Sparse Subspace Clustering)。低秩矩阵表示(LRR)为了对噪声和野点更加

8、鲁棒,一个更合理的模型为:一般意义上的LRR可以看做:低秩矩阵表示求解 构造上述优化问题的增广拉格朗日乘子函数为 当 时,的更新公式为的更新公式为的更新公式为拉格朗日乘子的迭代公式为参数的更新式为低秩矩阵表示的应用 图像分割B. Cheng et al. Multi-task Low-rank Affinity Pursuit for Image Segmentation, ICCV 2011. 低秩矩阵表示的应用 显著性检测Lang et al. Saliency Detection by Multitask Sparsity Pursuit. IEEE TIP 2012. 低秩矩阵表示新近

9、的发展研究 Latent LRRLiu and Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction, ICCV 2011. 低秩矩阵表示新近的发展研究 Fixed Rank Representation (FRR) Liu, Lin, Torre, and Su, Fixed-Rank Representation for Unsupervised Visual Learning, CVPR 2012. 低秩矩阵表示新近的发展研究 Kernel LRR Wang et al., Structural Similarity and Distance in Learning, Annual Allerton Conf. Communication, Control and Computing 2011. 低秩矩阵表示新近的发展研究 基于低秩张量应用研究低秩矩阵表示新近的发展研究 基于低秩张量应用研究稀疏表示和矩阵低秩分解类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论