中考数学复习课件:创新性开放性(1)_第1页
中考数学复习课件:创新性开放性(1)_第2页
中考数学复习课件:创新性开放性(1)_第3页
中考数学复习课件:创新性开放性(1)_第4页
中考数学复习课件:创新性开放性(1)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、创新型、开放型问题 例例1.比较下面的两列算式结果的大小:比较下面的两列算式结果的大小:(在横线上填在横线上填“”、“ (2) (3) (4) = 结论:对于任意两个实数结论:对于任意两个实数a和和b,一定有一定有 a2+b22ab证明:证明:(a-b)20, 即即a2-2ab+b20, a2+b22ab例例2.如图:已知如图:已知ABC为为 O的内接三角形,的内接三角形, O1过过C点与点与AC交点交点E,与,与 O交于点交于点D,连结,连结AD并并延长与延长与 O1交于点交于点F与与BC的延长线交于点的延长线交于点G,连结,连结EF,要使要使EFCG,ABC应满足什么条件?请补充应满足什么

2、条件?请补充上你认为缺少的条件后,上你认为缺少的条件后,证明证明EFGC(要求补充的要求补充的条件要明确,但不能条件要明确,但不能 多余多余)分析:要使分析:要使EFGC,需知,需知FEC=ACB,但,但从图中可知从图中可知FEC=FDC,FDC=B,所,所以以FEC=B,故当,故当B=ACB时,可得证时,可得证EFGC要使要使EFGC,ABC应应满足满足AB=AC或或ABC=ACB证明:连结证明:连结DC,则,则FDC=FEC,FDC=B,FEC=B,B=ACB,FEC=ACB,EFGC例例3.如图:已知如图:已知 O1与与 O2相交于相交于A.B两点,经过两点,经过A点的直线分别交点的直线

3、分别交 O1. O2于于C.D两点两点(D.C不与不与B重重合合).连结连结BD,过,过C点作点作BD的平行线交的平行线交 O1于点于点E,连,连结结BE(1)求证:求证:BE是是 O2的切线的切线(2)如图如图2,若两圆圆心在公,若两圆圆心在公共弦共弦AB的同侧,其他条件不的同侧,其他条件不变,判断变,判断BE与与 O2的位置关的位置关系系(不要求证明不要求证明)(3)若点若点C为劣弧为劣弧AB的中点,其他条件不变,连结的中点,其他条件不变,连结AB.AE,AB与与CE交于点交于点F,如图,如图3 写出图中所有的写出图中所有的相似三角形相似三角形(不另外连线,不要求证明不另外连线,不要求证明

4、)要证要证BE是是 O2的切线,需知的切线,需知EBO2=90,不妨过,不妨过B点作点作 O2的直径的直径BF交交 O2于于F点,点,则则BAF=90,即,即F+ABF=90,F=ADB,EBO2=EBA+ABF,要,要知知EBO2=90,需知,需知ABE=ADB,但,但ABE=ACE,由,由ECBD,得得ACE=ADB,故,故ABE=ADB得证,从而知得证,从而知EBO2=90,因此,因此BE是是 O2的切线的切线证明:作直径证明:作直径BF交交 O2于于F ,连,连结结AB、AF,则,则BAF=90,即即F+ABF=90。F=ADB,ABF+ADB=90。ECBD,ACE=ADB,又又AC

5、E=ABE,ABE=ADB,故,故ABF+ABE=90,即,即EBO2=90,EBBO2,EB是是 O2的切线的切线(2)分析:猜想分析:猜想EB与与 O2的关的关系是相切的系是相切的仍作仍作 O2的直径的直径BF,则,则FAB=90,同时,同时FAD+FBD=180,BAC+FBD=90。现只。现只需要得知需要得知FBE=90即可。由即可。由CEBD可知,可知,CEB+DBE=180,又,又,CEB=BAC,BAC+EBD=180,EBD-FBD=90,即,即FBE=90,故,故EB与与 O2是是相切的相切的证明:作证明:作 O2的直径的直径BF交交 O2于于F,则,则FAB=90且且FAD

6、+FBD=180,BAD+FBD=90。但。但BAD=CEB,故,故CEB+FBD=90。CEDB,CEB+EBD=180,EBD-FBD=90,即即FBE=90,EB是是 O2的切线的切线 证明证明ECDB,ACE=ADB,又,又ACE=ABE,ACE=ADB=ABE。C是劣弧是劣弧AB的中点,的中点,BAC=BEC=AEC,AFCABDEACEFB(3)若点若点C为劣弧为劣弧AB的中点,其他条件不变,的中点,其他条件不变,连结连结AB.AE,AB与与CE交于点交于点F,如图,如图3 写出写出图中所有的相似三角形图中所有的相似三角形(不另外连线,不要求不另外连线,不要求证明)证明)例例4.如

7、图直径为如图直径为13的的 O1经过原经过原点点O,并且与,并且与x轴、轴、y轴分别交于轴分别交于A、B两点,线段两点,线段OA、OB(OAOB)的长分别的长分别 是方程是方程x2+kx+60=0的两的两个根个根(1)求线段求线段OA、OB的长的长(2)已知点已知点C在劣弧在劣弧OA上,连结上,连结BC交交OA于于D,当,当OC2=CDCB时,求时,求C点的坐标点的坐标(3)在在 O1上是否存在点上是否存在点P, 使使SPOD=SABD?若存在,求出点?若存在,求出点P 的坐标;若不存在,请说明理由的坐标;若不存在,请说明理由(1)解:解:OA、OB是方是方程程x2+kx+60=0的两个根,的

8、两个根,OA+OB=-k,OAOB=60OBOA,AB是是 O1的直径的直径OA2+OB2=132,又,又OA2+OB2=(OA+OB)2-2OAOB,132=(-k)2-260 解解 之得:之得:k=17 OA+OB0,k9,所以假设错误,故这所以假设错误,故这样的点样的点P是不存在的是不存在的 分析:假设这样的点分析:假设这样的点P是存在的,是存在的,不妨设不妨设P(m,n),则,则P到到x轴的距轴的距离可表示为离可表示为|n|,从已知中得知,从已知中得知P到到x轴的最大距离为轴的最大距离为9,所以,所以|n|9。又。又SPOD=1/2OD|n|SABD=1/2ADOB,OD|n|=ADOB=(OA-OD)OB,即即OD|n|=(12-OD)5若能求出若能求出OD的长,就可得知的长,就可得知|n|。从而知。从而知P点点是否在是否在 O1上由上由(2)知知OCDBCO,则,则从中可求出从中可求出OD的长的长BCOCOBOD 在在 O1上不存在这样的上不存在这样的P点,点,使使SPOD=SABD。理由:假设在理由:假设在 O1上存在点上存在点P,使,使SPOD=SABD,不妨,不妨设设P(m,n),则,则P到到x轴的距轴的距离离|n|9。由。由OC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论