22一元二次方程复习课_第1页
22一元二次方程复习课_第2页
22一元二次方程复习课_第3页
22一元二次方程复习课_第4页
22一元二次方程复习课_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(下一次课)(下一次课)定义及一般形式:v 只含有一个未知数只含有一个未知数,未知数的最高次数是未知数的最高次数是_的的_式方程式方程,叫做一元二次方程。叫做一元二次方程。v一般形式一般形式:_二次二次整整axax2 2+bx+c=o (ao)+bx+c=o (ao)练习一练习一1、判断下面哪些方程是一元二次方程、判断下面哪些方程是一元二次方程222221x2y24(1)x -3x+4=x -7 ( ) (2) 2X = -4 ( )(3)3 X+5X-1=0 ( ) (4) 3x -20 ( )(5)13 ( )(6)0 ( )xy 练习二练习二2、把方程(、把方程(1-x x)(2-x x

2、)=3-x x2 化为一化为一般形式是:般形式是:_, 其二次项其二次项系数是系数是_,一次项系数是一次项系数是_,常数常数项是项是_.3、方程(、方程(m-2)x x|m| +3mx x-4=0是关于是关于x的一元二次方程,则的一元二次方程,则 ( )A.m=A.m=2 B.m=2 C.m=-2 D.m 2 B.m=2 C.m=-2 D.m 2 2 2x2-3x-1=02-3-1C解一元二次方程的方法有几种解一元二次方程的方法有几种? ? 例例:解下列方程解下列方程v、用直接开平方法、用直接开平方法:(x+2)2=v2、用配方法解方程、用配方法解方程4x2-8x-5=0解解:两边开平方两边开

3、平方,得得: x+2= 3 x=-23 x1=1, x2=-5右边开平方右边开平方后,根号前后,根号前取取“”。两边加上相等项两边加上相等项“1”。 解解:移项移项,得得: 3x2-4x-7=0 a=3 b=-4 c=-7 b2-4ac=(-4)2-43(-7)=1000 x1= x2 = 解解:原方程化为原方程化为 (y+2) 2 3(y+2)=0 (y+2)(y+2-3)=0 (y+2)(y-1)=0 y+2=0 或或 y-1=0 y1=-2 y2=141002 563x=先变为一般先变为一般形式,代入形式,代入时注意符号。时注意符号。83-把把y+2y+2看作一个看作一个未知数,变成未知

4、数,变成(ax+b)(cx+d(ax+b)(cx+d)=)=0 0形式。形式。3 3、用公式法解方程、用公式法解方程 3x3x2 2=4x+7=4x+74 4、用分解因式法解方程:(、用分解因式法解方程:(y+2)y+2)2 2=3(y+2=3(y+2)4 同除二次项系数化为同除二次项系数化为1;移常数项到右边;移常数项到右边;两边加上一次项系数一半的平方;两边加上一次项系数一半的平方;化直接开平方形式化直接开平方形式;解方程。解方程。步骤归纳步骤归纳 先化为一般形式;先化为一般形式;再确定再确定a、b、c,求求b2-4ac; 当当 b2-4ac 0时时,代入公式代入公式:242bbacxa-

5、=步骤归纳步骤归纳若若b2-4ac0,方程没有实数根。方程没有实数根。右边化为右边化为0,左边化成两个因式左边化成两个因式的积;的积;分别令两个因式为分别令两个因式为0,求解。,求解。步骤归纳步骤归纳选用适当方法解下列一元二次方程选用适当方法解下列一元二次方程v1 1、 (2x+1)(2x+1)2 2=64 =64 ( ( 法法)v2 2、 (x-2)(x-2)2 2- -(x+(x+) )2 2=0 =0 ( ( 法法)v3 3、( (x-x-) )2 2 -(4-(4-x)=x)= ( ( 法法)v4 4、 x x- -x-10=x-10= ( ( 法法)v5 5、 x x- -x-x-=

6、 = ( ( 法法)v6 6、 x xx-1=0 x-1=0 ( ( 法法)v7 7、 x x -x-x-= = ( ( 法法)v8 8、 y y2 2- y-1=0- y-1=0 ( ( 法法) 2小结:选择方法的顺序是:小结:选择方法的顺序是: 直接开平方法直接开平方法 分解因式法分解因式法 配方法配方法 公式法公式法分解因式分解因式分解因式分解因式 配方配方公式公式配方配方分解因式分解因式公式公式直接开平方直接开平方练习三练习三一一元元二二次次方方程程一元二次方程的定义一元二次方程的定义一元二次方程的解法一元二次方程的解法一元二次方程的应用一元二次方程的应用把握住:把握住:一个未知数,最高次数是一个未知数,最高次数是2, 整式方程整式方程一般形式:一般形式:ax+bx+c=0(a 0)直接开平方法:直接开平方法: 适应于形如(适应于形如(x-k) =h(h0)型)型 配方法:配方法: 适应于任何一个一元二次方程适应于任何一个一元二次方程公式法:公式法: 适应于任何一个一元二次方程适应于任何一个一元二次方程因式分解法:因式分解法: 适应于左边能分解为两个一次式的积,适应于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论