版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 1 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 2 设设D是上半平面内的一个有界闭区域。是上半平面内的一个有界闭区域。 将将D绕绕x轴轴旋转一周得一旋转体,求该旋旋转一周得一旋转体,求该旋转体的体积转体的体积V。 我们用元素法来建立旋转体体积的二我们用元素法来建立旋转体体积的二重积分公式。重积分公式。D July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 3d( , )x
2、yD在区域在区域D的的(x,y)处取一个面积元素处取一个面积元素d它到它到x轴的距离是轴的距离是 y (如图)。(如图)。该面积元素绕该面积元素绕x轴轴旋转而成的旋转体的体积约为:旋转而成的旋转体的体积约为:2dVyd(体积元素)(体积元素)于是整个区域绕于是整个区域绕x轴轴旋转而旋转而成的旋转体的体积为:成的旋转体的体积为:2DDVydVdy July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 4d( , )x yD命题命题1:上半平面内一个有界闭区域:上半平面内一个有界闭区域D绕绕x轴轴旋转而成的旋转体的体积为:旋转而成的旋转体的体积为
3、:2DdVyy July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 5下面来解释以上公式的几何意义下面来解释以上公式的几何意义 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 6区域区域D中一面积元素中一面积元素 绕绕x轴轴旋转而成旋转而成的旋转体为一的旋转体为一环形体环形体(如图如图)。dd July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 7区域区域D中一面积元素中一面积元素 绕绕x轴轴旋转而成旋转而成的旋转体为一环形体的旋
4、转体为一环形体(如图如图)。d其体积约为:其体积约为:2dVyd(体积元素)(体积元素) July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 8将将dV在在D上二重积分的几何意义是将划分上二重积分的几何意义是将划分D的的n个面积元素分别绕个面积元素分别绕x轴旋转而成的旋转体轴旋转而成的旋转体相加,得到整个相加,得到整个D绕绕x轴旋转的旋转体。轴旋转的旋转体。于是整个区域绕于是整个区域绕x轴轴旋转而成的旋转体旋转而成的旋转体的体积为:的体积为:2DDVydVd July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体
5、体积计算公式的几何意义 9以下图形给出了这种方法的几何解释以下图形给出了这种方法的几何解释 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 10 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 11display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4
6、_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constraine
7、d,color=green); July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 12 display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28
8、,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained,color=green); July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 13 display(xzhou
9、,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y
10、_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained,color=green); July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 14 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 15设想用电缆做成一个圆环体设想用电缆做成一个圆环体那么这个圆环体可由电缆中很多圆环形那么
11、这个圆环体可由电缆中很多圆环形状的光纤组成状的光纤组成因此,我们可以把这种计算旋转体体积因此,我们可以把这种计算旋转体体积的方法形象地称为的方法形象地称为光纤法光纤法或或电缆法电缆法 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 16更多的图形更多的图形 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 17 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 18 July 4, 2012四川大学数学学院 徐小湛旋转体体积计
12、算公式的几何意义旋转体体积计算公式的几何意义 19with(plots):xzhou:=spacecurve(x,0,0, x=-2.2, thickness=1,color=black):yzhou:=spacecurve(0,y,0, y=-2.2, thickness=1,color=black):zzhou:=spacecurve(0,0,z, z=-2.4, thickness=1,color=black):a:=0:b:=3:R:=1:r:=0.1:yuan:=spacecurve(0,a+R*cos(t),b+R*sin(t), t=0.2*Pi, thickness=3,col
13、or=red):a0:=0:a2:=0.2:a4:=0.4:a6:=0.6:a8:=0.8:a_2:=-0.2:a_4:=-0.4:a_6:=-0.6:a_8:=-0.8:b0:=3:b2:=3.2:b4:=3.4:b6:=3.6:b8:=3.8:b_2:=3-0.2:b_4:=3-0.4:b_6:=3-0.6:b_8:=3-0.8:y00:=spacecurve(0,a0+r*cos(t),b0+r*sin(t), t=0.2*Pi,color=blue):y02:=spacecurve(0,a0+r*cos(t),b2+r*sin(t), t=0.2*Pi,color=blue):y04:
14、=spacecurve(0,a0+r*cos(t),b4+r*sin(t), t=0.2*Pi,color=blue):y06:=spacecurve(0,a0+r*cos(t),b6+r*sin(t), t=0.2*Pi,color=blue):y08:=spacecurve(0,a0+r*cos(t),b8+r*sin(t), t=0.2*Pi,color=blue):y0_2:=spacecurve(0,a0+r*cos(t),b_2+r*sin(t), t=0.2*Pi,color=blue):y0_4:=spacecurve(0,a0+r*cos(t),b_4+r*sin(t), t
15、=0.2*Pi,color=blue):y0_6:=spacecurve(0,a0+r*cos(t),b_6+r*sin(t), t=0.2*Pi,color=blue):y0_8:=spacecurve(0,a0+r*cos(t),b_8+r*sin(t), t=0.2*Pi,color=blue):y20:=spacecurve(0,a2+r*cos(t),b0+r*sin(t), t=0.2*Pi,color=blue):y22:=spacecurve(0,a2+r*cos(t),b2+r*sin(t), t=0.2*Pi,color=blue):y24:=spacecurve(0,a2
16、+r*cos(t),b4+r*sin(t), t=0.2*Pi,color=blue):y26:=spacecurve(0,a2+r*cos(t),b6+r*sin(t), t=0.2*Pi,color=blue):y28:=spacecurve(0,a2+r*cos(t),b8+r*sin(t), t=0.2*Pi,color=blue):y2_2:=spacecurve(0,a2+r*cos(t),b_2+r*sin(t), t=0.2*Pi,color=blue):y2_4:=spacecurve(0,a2+r*cos(t),b_4+r*sin(t), t=0.2*Pi,color=bl
17、ue):y2_6:=spacecurve(0,a2+r*cos(t),b_6+r*sin(t), t=0.2*Pi,color=blue):y2_8:=spacecurve(0,a2+r*cos(t),b_8+r*sin(t), t=0.2*Pi,color=blue):y40:=spacecurve(0,a4+r*cos(t),b0+r*sin(t), t=0.2*Pi,color=blue):y42:=spacecurve(0,a4+r*cos(t),b2+r*sin(t), t=0.2*Pi,color=blue):y44:=spacecurve(0,a4+r*cos(t),b4+r*s
18、in(t), t=0.2*Pi,color=blue):y46:=spacecurve(0,a4+r*cos(t),b6+r*sin(t), t=0.2*Pi,color=blue):y48:=spacecurve(0,a4+r*cos(t),b8+r*sin(t), t=0.2*Pi,color=blue):y4_2:=spacecurve(0,a4+r*cos(t),b_2+r*sin(t), t=0.2*Pi,color=blue):y4_4:=spacecurve(0,a4+r*cos(t),b_4+r*sin(t), t=0.2*Pi,color=blue):y4_6:=spacec
19、urve(0,a4+r*cos(t),b_6+r*sin(t), t=0.2*Pi,color=blue):y4_8:=spacecurve(0,a4+r*cos(t),b_8+r*sin(t), t=0.2*Pi,color=blue):y60:=spacecurve(0,a6+r*cos(t),b0+r*sin(t), t=0.2*Pi,color=blue):y62:=spacecurve(0,a6+r*cos(t),b2+r*sin(t), t=0.2*Pi,color=blue):y64:=spacecurve(0,a6+r*cos(t),b4+r*sin(t), t=0.2*Pi,
20、color=blue):y66:=spacecurve(0,a6+r*cos(t),b6+r*sin(t), t=0.2*Pi,color=blue):y6_2:=spacecurve(0,a6+r*cos(t),b_2+r*sin(t), t=0.2*Pi,color=blue):y6_4:=spacecurve(0,a6+r*cos(t),b_4+r*sin(t), t=0.2*Pi,color=blue):y6_6:=spacecurve(0,a6+r*cos(t),b_6+r*sin(t), t=0.2*Pi,color=blue):y80:=spacecurve(0,a8+r*cos
21、(t),b0+r*sin(t), t=0.2*Pi,color=blue):y82:=spacecurve(0,a8+r*cos(t),b2+r*sin(t), t=0.2*Pi,color=blue):y84:=spacecurve(0,a8+r*cos(t),b4+r*sin(t), t=0.2*Pi,color=blue):y8_2:=spacecurve(0,a8+r*cos(t),b_2+r*sin(t), t=0.2*Pi,color=blue):y8_4:=spacecurve(0,a8+r*cos(t),b_4+r*sin(t), t=0.2*Pi,color=blue):y8
22、_6:=spacecurve(0,a8+r*cos(t),b_6+r*sin(t), t=0.2*Pi,color=blue):y_20:=spacecurve(0,a_2+r*cos(t),b0+r*sin(t), t=0.2*Pi,color=blue):y_22:=spacecurve(0,a_2+r*cos(t),b2+r*sin(t), t=0.2*Pi,color=blue):y_24:=spacecurve(0,a_2+r*cos(t),b4+r*sin(t), t=0.2*Pi,color=blue):y_26:=spacecurve(0,a_2+r*cos(t),b6+r*s
23、in(t), t=0.2*Pi,color=blue):y_28:=spacecurve(0,a_2+r*cos(t),b8+r*sin(t), t=0.2*Pi,color=blue):y_2_2:=spacecurve(0,a_2+r*cos(t),b_2+r*sin(t), t=0.2*Pi,color=blue):y_2_4:=spacecurve(0,a_2+r*cos(t),b_4+r*sin(t), t=0.2*Pi,color=blue):y_2_6:=spacecurve(0,a_2+r*cos(t),b_6+r*sin(t), t=0.2*Pi,color=blue):y_
24、2_8:=spacecurve(0,a_2+r*cos(t),b_8+r*sin(t), t=0.2*Pi,color=blue):y_40:=spacecurve(0,a_4+r*cos(t),b0+r*sin(t), t=0.2*Pi,color=blue):y_42:=spacecurve(0,a_4+r*cos(t),b2+r*sin(t), t=0.2*Pi,color=blue):y_44:=spacecurve(0,a_4+r*cos(t),b4+r*sin(t), t=0.2*Pi,color=blue):y_46:=spacecurve(0,a_4+r*cos(t),b6+r
25、*sin(t), t=0.2*Pi,color=blue):y_48:=spacecurve(0,a_4+r*cos(t),b8+r*sin(t), t=0.2*Pi,color=blue):y_4_2:=spacecurve(0,a_4+r*cos(t),b_2+r*sin(t), t=0.2*Pi,color=blue):y_4_4:=spacecurve(0,a_4+r*cos(t),b_4+r*sin(t), t=0.2*Pi,color=blue):y_4_6:=spacecurve(0,a_4+r*cos(t),b_6+r*sin(t), t=0.2*Pi,color=blue):
26、y_4_8:=spacecurve(0,a_4+r*cos(t),b_8+r*sin(t), t=0.2*Pi,color=blue):y_60:=spacecurve(0,a_6+r*cos(t),b0+r*sin(t), t=0.2*Pi,color=blue):y_62:=spacecurve(0,a_6+r*cos(t),b2+r*sin(t), t=0.2*Pi,color=blue):y_64:=spacecurve(0,a_6+r*cos(t),b4+r*sin(t), t=0.2*Pi,color=blue):y_66:=spacecurve(0,a_6+r*cos(t),b6
27、+r*sin(t), t=0.2*Pi,color=blue):y_6_2:=spacecurve(0,a_6+r*cos(t),b_2+r*sin(t), t=0.2*Pi,color=blue):y_6_4:=spacecurve(0,a_6+r*cos(t),b_4+r*sin(t), t=0.2*Pi,color=blue):y_6_6:=spacecurve(0,a_6+r*cos(t),b_6+r*sin(t), t=0.2*Pi,color=blue):y_80:=spacecurve(0,a_8+r*cos(t),b0+r*sin(t), t=0.2*Pi,color=blue
28、):y_82:=spacecurve(0,a_8+r*cos(t),b2+r*sin(t), t=0.2*Pi,color=blue):y_84:=spacecurve(0,a_8+r*cos(t),b4+r*sin(t), t=0.2*Pi,color=blue):y_8_2:=spacecurve(0,a_8+r*cos(t),b_2+r*sin(t), t=0.2*Pi,color=blue):y_8_4:=spacecurve(0,a_8+r*cos(t),b_4+r*sin(t), t=0.2*Pi,color=blue):y_8_6:=spacecurve(0,a_8+r*cos(
29、t),b_6+r*sin(t), t=0.2*Pi,color=blue):h00:=plot3d(b0+r*cos(t)*sin(u),a0+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h02:=plot3d(b2+r*cos(t)*sin(u),a0+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h04:=plot3d(b4+r*cos(t)*sin(u),a0+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h06:=plot3d(b6+r
30、*cos(t)*sin(u),a0+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h08:=plot3d(b8+r*cos(t)*sin(u),a0+r*sin(t),(b8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h0_2:=plot3d(b_2+r*cos(t)*sin(u),a0+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h0_4:=plot3d(b_4+r*cos(t)*sin(u),a0+r*sin(t),(b_4+r*cos(t)*cos(u),t
31、=0.2*Pi,u=0.2*Pi):h0_6:=plot3d(b_6+r*cos(t)*sin(u),a0+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h0_8:=plot3d(b_8+r*cos(t)*sin(u),a0+r*sin(t),(b_8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h20:=plot3d(b0+r*cos(t)*sin(u),a2+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h22:=plot3d(b2+r*cos(t)*sin(u)
32、,a2+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h24:=plot3d(b4+r*cos(t)*sin(u),a2+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h26:=plot3d(b6+r*cos(t)*sin(u),a2+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h28:=plot3d(b8+r*cos(t)*sin(u),a2+r*sin(t),(b8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h2
33、_2:=plot3d(b_2+r*cos(t)*sin(u),a2+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h2_4:=plot3d(b_4+r*cos(t)*sin(u),a2+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h2_6:=plot3d(b_6+r*cos(t)*sin(u),a2+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h2_8:=plot3d(b_8+r*cos(t)*sin(u),a2+r*sin(t),(b
34、_8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h40:=plot3d(b0+r*cos(t)*sin(u),a4+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h42:=plot3d(b2+r*cos(t)*sin(u),a4+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h44:=plot3d(b4+r*cos(t)*sin(u),a4+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h46:=plot3d(b6+r
35、*cos(t)*sin(u),a4+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h48:=plot3d(b8+r*cos(t)*sin(u),a4+r*sin(t),(b8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h4_2:=plot3d(b_2+r*cos(t)*sin(u),a4+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h4_4:=plot3d(b_4+r*cos(t)*sin(u),a4+r*sin(t),(b_4+r*cos(t)*cos(u),t
36、=0.2*Pi,u=0.2*Pi):h4_6:=plot3d(b_6+r*cos(t)*sin(u),a4+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h4_8:=plot3d(b_8+r*cos(t)*sin(u),a4+r*sin(t),(b_8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h60:=plot3d(b0+r*cos(t)*sin(u),a6+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h62:=plot3d(b2+r*cos(t)*sin(u)
37、,a6+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h64:=plot3d(b4+r*cos(t)*sin(u),a6+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h66:=plot3d(b6+r*cos(t)*sin(u),a6+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h6_2:=plot3d(b_2+r*cos(t)*sin(u),a6+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi)
38、:h6_4:=plot3d(b_4+r*cos(t)*sin(u),a6+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h6_6:=plot3d(b_6+r*cos(t)*sin(u),a6+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h80:=plot3d(b0+r*cos(t)*sin(u),a8+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h82:=plot3d(b2+r*cos(t)*sin(u),a8+r*sin(t),(b2+
39、r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h84:=plot3d(b4+r*cos(t)*sin(u),a8+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h8_2:=plot3d(b_2+r*cos(t)*sin(u),a8+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h8_4:=plot3d(b_4+r*cos(t)*sin(u),a8+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_20:=plot3d(
40、b0+r*cos(t)*sin(u),a_2+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_22:=plot3d(b2+r*cos(t)*sin(u),a_2+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_24:=plot3d(b4+r*cos(t)*sin(u),a_2+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_26:=plot3d(b6+r*cos(t)*sin(u),a_2+r*sin(t),(b6+r*cos(t)*cos
41、(u),t=0.2*Pi,u=0.2*Pi):h_28:=plot3d(b8+r*cos(t)*sin(u),a_2+r*sin(t),(b8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_2_2:=plot3d(b_2+r*cos(t)*sin(u),a_2+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_2_4:=plot3d(b_4+r*cos(t)*sin(u),a_2+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_2_6:=plot3d(b_6+r
42、*cos(t)*sin(u),a_2+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_2_8:=plot3d(b_8+r*cos(t)*sin(u),a_2+r*sin(t),(b_8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_40:=plot3d(b0+r*cos(t)*sin(u),a_4+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_42:=plot3d(b2+r*cos(t)*sin(u),a_4+r*sin(t),(b2+r*cos(t)*cos
43、(u),t=0.2*Pi,u=0.2*Pi):h_44:=plot3d(b4+r*cos(t)*sin(u),a_4+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_46:=plot3d(b6+r*cos(t)*sin(u),a_4+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_48:=plot3d(b8+r*cos(t)*sin(u),a_4+r*sin(t),(b8+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_4_2:=plot3d(b_2+r*cos(t
44、)*sin(u),a_4+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_4_4:=plot3d(b_4+r*cos(t)*sin(u),a_4+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_4_6:=plot3d(b_6+r*cos(t)*sin(u),a_4+r*sin(t),(b_6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_4_8:=plot3d(b_8+r*cos(t)*sin(u),a_4+r*sin(t),(b_8+r*cos(t)*cos
45、(u),t=0.2*Pi,u=0.2*Pi):h_60:=plot3d(b0+r*cos(t)*sin(u),a_6+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_62:=plot3d(b2+r*cos(t)*sin(u),a_6+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_64:=plot3d(b4+r*cos(t)*sin(u),a_6+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_66:=plot3d(b6+r*cos(t)*
46、sin(u),a_6+r*sin(t),(b6+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_6_2:=plot3d(b_2+r*cos(t)*sin(u),a_6+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_6_4:=plot3d(b_4+r*cos(t)*sin(u),a_6+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_6_6:=plot3d(b_6+r*cos(t)*sin(u),a_6+r*sin(t),(b_6+r*cos(t)*cos(u)
47、,t=0.2*Pi,u=0.2*Pi):h_80:=plot3d(b0+r*cos(t)*sin(u),a_8+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_82:=plot3d(b2+r*cos(t)*sin(u),a_8+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_84:=plot3d(b4+r*cos(t)*sin(u),a_8+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_8_2:=plot3d(b_2+r*cos(t)*s
48、in(u),a_8+r*sin(t),(b_2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h_8_4:=plot3d(b_4+r*cos(t)*sin(u),a_8+r*sin(t),(b_4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60
49、,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h02,h04,h06,h08,h0_2,h0_4,h0_6,h0_8,h20,h22,h24,h26,h28,h2_2,h2_4,h2_6,h2_8,h40,h42
50、,h44,h46,h48,h4_2,h4_4,h4_6,h4_8,h60,h62,h64,h66,h6_2,h6_4,h6_6,h80,h82,h84,h8_2,h8_4,h_20,h_22,h_24,h_26,h_28,h_2_2,h_2_4,h_2_6,h_2_8,h_40,h_42,h_44,h_46,h_48,h_4_2,h_4_4,h_4_6,h_4_8,h_60,h_62,h_64,h_66,h_6_2,h_6_4,h_6_6,h_80,h_82,h_84,h_8_2,h_8_4,scaling=constrained); July 4, 2012四川大学数学学院 徐小湛旋转体体积
51、计算公式的几何意义旋转体体积计算公式的几何意义 20 display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,
52、y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h04,h08,h0_4,h0_8,h22,h26,h2_2,h2_6,h44,h48,h4_4,h4_8,h62,h66,h6_2,h6_6,h80,h84,h8_4,h_20,h_24,h_28,h_2_4,h_2_8,h_44,h_48,h_4_4,h_4_8,h_62,h_66,h_6_2,h_6_6,h_80,h_84,h_8_4,scaling=constrained); July 4,
53、2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 21 display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8
54、,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h08,h0_8,h26,h2_6,h44,h4_4,h62,h6_2,h80,h84,h8_4,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained); July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 22d
55、isplay(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8
56、,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained,color=green); July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 23display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,
57、y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,
58、h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained,color=green); July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 24 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 25 July 4, 2012四川大学数学学院 徐小湛旋转体体积计算公式的几何意义旋转体体积计算公式的几何意义 26 with(plots):xzhou:=spacecurve(x,0,0, x=-2.2, thickness=1,col
59、or=black):yzhou:=spacecurve(0,y,0, y=-2.2, thickness=1,color=black):zzhou:=spacecurve(0,0,z, z=-2.4, thickness=1,color=black):a:=0:b:=3:R:=1:r:=0.1:yuan:=spacecurve(0,a+R*cos(t),b+R*sin(t), t=0.2*Pi, thickness=3,color=red):a0:=0:a2:=0.2:a4:=0.4:a6:=0.6:a8:=0.8:a_2:=-0.2:a_4:=-0.4:a_6:=-0.6:a_8:=-0.8
60、:b0:=3:b2:=3.2:b4:=3.4:b6:=3.6:b8:=3.8:b_2:=3-0.2:b_4:=3-0.4:b_6:=3-0.6:b_8:=3-0.8:y00:=spacecurve(0,a0+r*cos(t),b0+r*sin(t), t=0.2*Pi,color=blue):y02:=spacecurve(0,a0+r*cos(t),b2+r*sin(t), t=0.2*Pi,color=blue):y04:=spacecurve(0,a0+r*cos(t),b4+r*sin(t), t=0.2*Pi,color=blue):y06:=spacecurve(0,a0+r*co
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度二零二五民间借贷合同风险评估与管理范本4篇
- 二零二五年度抹灰工程绿色施工与环保合同4篇
- 二零二五年度教育培训场地租赁合同模板4篇
- 2025年度派驻技术支持服务合同模板范本4篇
- 2025年度个人二手房交易纠纷调解服务合同
- 2025年建筑工程施工项目经理劳动合同模板2篇
- 二零二五医疗治疗期间员工劳动合同补充协议3篇
- 二零二五年度新型农村合作社劳动者劳动合同书
- 2025年度智能家居系统安装与维护个人房屋装修合同标准范本2篇
- 2024版预售房屋购买合同书
- GB/T 43650-2024野生动物及其制品DNA物种鉴定技术规程
- 2024年南京铁道职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 暴发性心肌炎查房
- 口腔医学中的人工智能应用培训课件
- 工程质保金返还审批单
- 【可行性报告】2023年电动自行车项目可行性研究分析报告
- 五月天歌词全集
- 商品退换货申请表模板
- 实习单位鉴定表(模板)
- 数字媒体应用技术专业调研方案
- 2023年常州市新课结束考试九年级数学试卷(含答案)
评论
0/150
提交评论