北师大版七年级数学下册第二章相交线与平行线课件全套_第1页
北师大版七年级数学下册第二章相交线与平行线课件全套_第2页
北师大版七年级数学下册第二章相交线与平行线课件全套_第3页
北师大版七年级数学下册第二章相交线与平行线课件全套_第4页
北师大版七年级数学下册第二章相交线与平行线课件全套_第5页
已阅读5页,还剩80页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北师大版七年级数学下册第二章相交线与平行线课件全套欣赏:欣赏: 情景导入12了解邻补角,对顶角的概念,能找出图了解邻补角,对顶角的概念,能找出图形中一个角的邻补角和对顶角;形中一个角的邻补角和对顶角; 理解对顶角的性质,并会对其进行运用。理解对顶角的性质,并会对其进行运用。学习目标 11,2 2,3 3,4 4你能动手画出两条相交直线吗你能动手画出两条相交直线吗? ? 1 1、两条直线相交,形成的小于平角的角有哪几个?、两条直线相交,形成的小于平角的角有哪几个?1 12 23 34 4B BA AC CD Do o探究点一:邻补角和对顶角概念探究点一:邻补角和对顶角概念讲授新课 2 2、将这些

2、角两两相配能得到几对角?、将这些角两两相配能得到几对角?1 12 23 34 4B BA AC CD Do o分类分类两直线相交两直线相交1 1 和和2 22 2 和和1 1 和和3 3位置关系位置关系大小关系大小关系3 31 1、你能根据这几对角的位置关系,对它们进行分类吗?、你能根据这几对角的位置关系,对它们进行分类吗?B BA AC CD D2 24 41 13 33 3 和和4 44 4 和和1 12 2 和和4 4 2 2、观察、观察1 1和和2 2的顶点和两边,有怎样的位置关系?的顶点和两边,有怎样的位置关系?1 12 23 34 4B BC CD Do oA A分类分类邻补角邻补

3、角 两直线相交两直线相交B BA AC CD D2 24 41 13 3位置关系位置关系大小关系大小关系 3 3、类比、类比1 1和和2 2,看,看1 1和和3 3有怎样的位置关系?有怎样的位置关系?1 1 和和2 22 2 和和1 1 和和3 33 33 3 和和4 44 4 和和1 12 2 和和4 41 13 3B BC CD DA A2 24 4o o分类分类邻邻补补角角 两直线相交两直线相交对对顶顶角角 位置位置关系关系大小关系大小关系 4 4、你能写出邻补角、你能写出邻补角1 1和和2 2的大小关系式吗?的大小关系式吗?1+2=1801+2=1802+3=1802+3=1803+4

4、=1803+4=1804+1=1804+1=180B BA AC CD D2 24 41 13 31 1 和和2 22 2 和和1 1 和和3 33 33 3 和和4 44 4 和和1 12 2 和和4 4探究点二:对顶角、邻补角的性质探究点二:对顶角、邻补角的性质分类分类邻邻补补角角 两直线相交两直线相交对对顶顶角角 位置位置关系关系大小关系大小关系1+2=1801+2=1802+3=1802+3=1803+4=1803+4=1804+1=1804+1=180 5 5、你能得到对顶角、你能得到对顶角1 1和和3 3的大小关系吗?的大小关系吗?B BA AC CD D2 24 41 13 31

5、 1 和和2 22 2 和和1 1 和和3 33 33 3 和和4 44 4 和和1 12 2 和和4 4 2 +3= 2 +3= , 4 4、你能得到对顶角、你能得到对顶角1 1和和3 3的大小关系吗?的大小关系吗?22与与3 3互补互补11与与2 2互补,互补, 那么那么 2 2 +1= +1= , 1= 31= 3180180180180由同角的补角相等可知由同角的补角相等可知动动脑:动动脑:为什么?为什么?1 12 23 34 4B BA AC CD Do o分类分类邻邻补补角角 两直线相交两直线相交对对顶顶角角 位置位置关系关系大小关系大小关系1+2=1801+2=1802+3=18

6、02+3=1803+4=1803+4=1804+1=1804+1=180 邻补角、对顶角的位置关系和大小关系邻补角、对顶角的位置关系和大小关系B BA AC CD D2 24 41 13 31=31=32=42=41 1 和和2 22 2 和和1 1 和和3 33 33 3 和和4 44 4 和和1 12 2 和和4 4例例1 1、如图、如图, ,直线直线a a、b b相交,相交,1=401=40, ,求求 2 2、3 3、4 4的度数。的度数。a ab b)(1 13 34 42 2)(解:解:由邻补角的定义可知由邻补角的定义可知 2=1802=180-1-1 =180 =180-40-40

7、=140=140 由对顶角相等可得由对顶角相等可得 3=1=403=1=40,4=2=1404=2=140 变式:直线变式:直线ABAB、CDCD相交与点相交与点O,AOC=40O,AOC=40,OE,OE平分平分AOCAOC,求,求DOEDOE的度数。的度数。ABOCDE解:解:OE平分平分AOC, 且且AOC =40 COE= AOC=20 DOE=180-COE=12021判断题判断题:1.如果两个角有公共顶点和一条公共边如果两个角有公共顶点和一条公共边,而且而且这两角互为补角这两角互为补角, 那么它们互为邻补角那么它们互为邻补角. ( )2.两条直线相交两条直线相交,如果它们所成的邻补

8、角相等如果它们所成的邻补角相等,那么一对对顶角就互补那么一对对顶角就互补. ( )课堂练习 填空题填空题:3.如图如图 ,直线直线AB、CD、EF相交于点相交于点O,BOE的对的对顶角是顶角是_,COF 的邻补角是的邻补角是_若若AOC:AOE=2:3,EOD=130,则则BOC=_ F E O D C B A4.如图如图 ,直线直线AB、CD相交于点相交于点O,COE=90,AOC=30,FOB=90, 则则EOF=_. F E O D C B ACOFCOE和和DOF160150对顶角和邻补角各有什么特征?产生这两对顶角和邻补角各有什么特征?产生这两 类角的前提是什么?类角的前提是什么?2

9、.对顶角有什么性质?这个性质是怎么推导对顶角有什么性质?这个性质是怎么推导 出来的?出来的?3.两条直线相交形成的四个角中,有几对对两条直线相交形成的四个角中,有几对对 顶角?几对邻补角?顶角?几对邻补角?课堂小结上交作业:上交作业:教科书习题教科书习题2.1第第1,2,5题题;课后作业1 两条直线的位置关系(第两条直线的位置关系(第2 2课时)课时)第二章 相交线与平行线北师版七年级下册在相交线的模型中,固定木条a,转动木条b,当当 =90 =90时时,a ,a与与b b垂直垂直. .当b的位置变化时,a、b所成的角也会发生变化.当当 90 90时时,a ,a与与b b不垂不垂直,叫斜交直,

10、叫斜交. .两条直线相交两条直线相交斜交斜交垂直垂直垂直是相交的特殊情况垂直是相交的特殊情况)情景导入13理解垂线的定义;理解垂线的定义;会过一点画已知直线的垂线。会过一点画已知直线的垂线。2掌握垂线的性质并会应用;掌握垂线的性质并会应用;学习目标探究点一:垂线的概念探究点一:垂线的概念阅读教材第阅读教材第4141页,思考下列问题:页,思考下列问题:两条相交直线在什么情况下是垂直的?两条相交直线在什么情况下是垂直的? 什么叫垂线?什么叫垂足?什么叫垂线?什么叫垂足?2.垂线是一条直线还是线段垂线是一条直线还是线段?3.请举出生活中垂直的例子。请举出生活中垂直的例子。讲授新课1.1.垂直定义:垂

11、直定义:当两条直线相交所成的四个角中,有当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相一个角是直角时,这两条直线互相垂直垂直,其中一条其中一条直线叫另一条直线的直线叫另一条直线的垂线垂线,它们的交点叫,它们的交点叫垂足垂足。baO O abab或或b ba, a, ab, ab, 垂足为垂足为O.O.十字路口的两条道路十字路口的两条道路围棋盘的横线和竖线围棋盘的横线和竖线铅垂线和水平线铅垂线和水平线ABCDO书写形式:如图,当直线如图,当直线ABAB与与CDCD相交于相交于OO点,点,AOD=90AOD=90时,时,ABABCDCD,垂足为,垂足为OO。判定:判定:AOD=90

12、AOD=90(已知)(已知) ABABCDCD(垂直的定义)(垂直的定义)书写形式:反之,若直线反之,若直线ABAB与与CDCD垂直,垂足为垂直,垂足为OO,那么,那么,AOD=90AOD=90。性质:性质: ABABCDCD (已知)(已知) AOD=90 AOD=90 (垂直的定义)(垂直的定义)(AOC=BOC=BOD=90(AOC=BOC=BOD=90) )3.3.垂直的书写形式:垂直的书写形式: O D C B AE例例1:如图,直线如图,直线AB,CD相交于点相交于点O,OECDECD于于O,O, AOE:COE=1:3,求,求BOD的度数。的度数。解:解:OECD COE=90

13、又又AOE:COE=1:3 AOE= COE=30 COA=9030=60 BOD= COA=60 31 O D C B AE变式:变式:如图,直线如图,直线AB,CD相交于点相交于点O,若,若AO平分平分COE,且,且BOD=45,判断,判断OE与与CD的位置关系,并说明理由。的位置关系,并说明理由。解:解:OE CD探究点二:垂线的性质探究点二:垂线的性质lO孝感市文昌中学学生专用尺01234567891011CmAlA孝感市文昌中学学生专用尺01234567891011CmBlA孝感市文昌中学学生专用尺01234567891011CmB垂线的性质(垂线的性质(1 1)1.如图如图1,OA

14、OB,ODOC,O为垂足为垂足,若若AOC=35,则则BOD=_.2.如图如图2,AOBO,O为垂足为垂足,直线直线CD过点过点O,且且BOD=2AOC,则则BOD=_.3.如图如图3,直线直线AB、CD相交于点相交于点O,若若EOD=40,BOC=130,那么射线那么射线OE 与直线与直线AB的的位置关系是位置关系是_12560ABBCD. E (3) O D C B A (2) O D C B A (1) O D C B A课堂练习 E O D C B A4、如图、如图,直线直线AB,垂线垂线OC交于点交于点O,OD平分平分BOC,OE平分平分AOC.试判断试判断OD 与与OE的位置关系的

15、位置关系.解:解:OD OE 谈谈你对垂线的认识。谈谈你对垂线的认识。 垂线的性质是什么?为什么这一性质要加垂线的性质是什么?为什么这一性质要加上前提上前提“在同一平面内在同一平面内”?课堂小结上交作业:上交作业:教科书习题教科书习题2.2第第1、2题题;课后作业2 探索直线探索直线平行的条件平行的条件第二章 相交线与平行线北师版七年级下册1、画图:已知直线、画图:已知直线AB,点,点P在直线在直线AB外,用外,用直尺和三角尺画过点直尺和三角尺画过点P的直线的直线CD,使,使CDAB.2、反思:在用直尺和三角尺画平行线过程中、反思:在用直尺和三角尺画平行线过程中,三角尺起着什么样的作用三角尺起

16、着什么样的作用.答:利用三角尺的平移,得到同位角答:利用三角尺的平移,得到同位角相等,两直线平行。相等,两直线平行。新课引入12掌握平行线的四种判定方法掌握平行线的四种判定方法 初步学会简单的论证和推理初步学会简单的论证和推理学习目标学习目标认真阅读课本第认真阅读课本第44至至47页的内容,页的内容,完成下面练习并体验知识点的形成完成下面练习并体验知识点的形成过程过程.讲授新课练一练:练一练: 如图如图2,如果,如果2=3,能得出,能得出ab吗?请说明。吗?请说明。解:解:2=3,而,而3=1()1=2 (等量代换)(等量代换)ab( )知识点一知识点一平行线判定方法平行线判定方法11、判定方

17、法、判定方法1:。简单说成简单说成: 。几何语言:几何语言:12(已知)(已知) ABCD(同位角相等,两直线平行)(同位角相等,两直线平行) G H P F E 2 1 D C B Acba342图图2同位角相等,两直线平行同位角相等,两直线平行对顶角相等对顶角相等同位角相等,两直线平行同位角相等,两直线平行两条直线被第三条直线所截,如果同位角两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行相等,那么这两条直线平行知识点二知识点二平行线判定方法平行线判定方法2判定方法判定方法2:。简单说成简单说成: 。几何语言:几何语言: 23(已知)(已知) ab(内错角相等,两直线平行)(内

18、错角相等,两直线平行)cba342图图2 练一练:练一练:如图如图2,如果,如果2+4=180 , 能得出能得出ab吗?请说明。吗?请说明。解:方法一:解:方法一:4+2=180,而而4+1=180, 2=1(同角的补角相等),(同角的补角相等), ab( )两条直线被第三条直线所截,如果内错角两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行相等,那么这两条直线平行内错角相等,两直线平行内错角相等,两直线平行 同位角相等,两直线平行同位角相等,两直线平行知识点二知识点二方法二:方法二: 4+2=180,而而4+3=180, 3=2( ),), ab( )同角的补角相等同角的补角相等

19、 内错角相等,两直线平行内错角相等,两直线平行如图如图2,如果,如果2+4=180 , 能得出能得出ab吗?请说明。吗?请说明。cba342图图2 知识点三知识点三平行线判定方法平行线判定方法3判定方法判定方法3:。 简单说成:简单说成: 。几何语言:何语言: 24180(已知)(已知) ab(同旁内角互补,两直线平行)(同旁内角互补,两直线平行)cba342图图2 练一练练一练1、如图、如图1所示,若所示,若1=62,2=118,则则_,根据是,根据是_ _。图图1AD BC 同旁内角互补,同旁内角互补,两直线平行两直线平行两条直线被第三条直线所截,如果同旁内两条直线被第三条直线所截,如果同

20、旁内角互补,那么这两条直线平行角互补,那么这两条直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行知识点三知识点三2、根据图、根据图2完成下列填空(括号内填写定理或公理)完成下列填空(括号内填写定理或公理)(1)1=4(已知)(已知)( )(2)ABC + =180(已知)(已知)ABCD( )图图2(3) = (已知)(已知) ADBC( )(4)5= (已知)(已知) ABCD( )ABCD 内错角相等,两直线平行内错角相等,两直线平行 C同旁内角互补,两直线平行同旁内角互补,两直线平行2 3 内错角相等,两直线平行内错角相等,两直线平行 ABC 同位角相等,两直线平行同位角相等,两

21、直线平行 知识点四知识点四 平行线判定方法平行线判定方法4 判定方法判定方法4:在同一平面内,如果两条直线都垂直于:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线同一条直线,那么这两条直线 。理由如下:(如右图)理由如下:(如右图) ba,ca, 1=2=90 bc( ) c b a 2 1练一练:练一练:如图是木工师傅使用角尺画平行线,有什么道理?如图是木工师傅使用角尺画平行线,有什么道理? 互相平行互相平行同位角相等,两直线平行同位角相等,两直线平行 1、如图,若、如图,若2=6,则则_,如果如果3+4+5+6=180,那么那么_;如果如果9=_,那么那么ADBC;如果如果9

22、=_,那么,那么ABCD. 9 6 5 4 3 2 1 D C B A2、如图所示,已知、如图所示,已知OEB=130,OF平分平分 EOD,FOD=25,ABCD吗?试说明吗?试说明解解 : ABCD; OF平分平分EOD,FOD=25 EOD=50 OEB=130 EOD+OEB=180 ABCDAD BC AD BC BAD BCD 课堂练习1、本节课学习判定两直线平行的方法有、本节课学习判定两直线平行的方法有 种。分别是:种。分别是:平行线判定方法平行线判定方法1: 平行线判定方法平行线判定方法2: 平行线判定方法平行线判定方法3:平行线判定方法平行线判定方法4:2、学习反思、学习反思

23、: 同位角相等,两直线平行同位角相等,两直线平行内错角相等,两直线平行内错角相等,两直线平行 同旁内角互补,两直线平行同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两条直线在同一平面内,垂直于同一条直线的两条直线平行线的判定是由两个角的大小关系得到两条直线的位置关系。平行线的判定是由两个角的大小关系得到两条直线的位置关系。 四四互相平行互相平行课堂小结上交作业:课本上交作业:课本46-47 页页 第第1、5题题 课本课本49 页页 第第1、2 题题课后作业3 平行线的性质平行线的性质第二章 相交线与平行线北师版七年级下册如图,填空:如果1C,那么( ) 如果1B 那么( ) 如果2B

24、180,那么( )ABCDECBD同位角相等,两直同位角相等,两直 线平行线平行内错角相等,两直线平行内错角相等,两直线平行ECBD同旁内角互补同旁内角互补, ,两直线平行两直线平行EACDB1234情景导入 想一想:想一想: 平行线的平行线的三种三种判定方法分别是判定方法分别是 先知道什么先知道什么、 后知道什么?后知道什么? 同位角相等同位角相等 内错角相等内错角相等 同旁内角互补同旁内角互补反过来,如果两条直线平行,同位角、反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?内错角、同旁内角各有什么关系呢?1掌握平行线的性质并会熟练运用;掌握平行线的性质并会熟练运用;2能够

25、综合运用平行线的性质与判定进能够综合运用平行线的性质与判定进行推理。行推理。学习目标探究点一:平行线的性质探究点一:平行线的性质探究探究:画两条平行线画两条平行线a/b,然后画一条截线,然后画一条截线c与与a、b相交,标出如图的角相交,标出如图的角. 任选一组同位角、内错角或任选一组同位角、内错角或同旁内角,度量这些角,把结果填入下表:同旁内角,度量这些角,把结果填入下表:角角1234度数度数角角5678度数度数abc13248576讲授新课观察与猜想:观察与猜想: 各对同位角、内错角、同旁内角的度数之间有各对同位角、内错角、同旁内角的度数之间有什么关系?说出你的猜想:什么关系?说出你的猜想:

26、 猜想: 两条平行线被第三条直线所截,同位角, 内错角,同旁内角。 再任意画一条截线再任意画一条截线d d,同样度量并计算各个角,同样度量并计算各个角的度数,你的猜想还成立吗?的度数,你的猜想还成立吗?相等相等互补性质:两条平行线被第三条直线所截,同位角相等性质:两条平行线被第三条直线所截,同位角相等性质:两条平行线被第三条直线所截,内错角相等性质:两条平行线被第三条直线所截,内错角相等性质:两条平行线被第三条直线所截,同旁内角互补性质:两条平行线被第三条直线所截,同旁内角互补平行线的性质:平行线的性质:简单说成:简单说成:性质:两直线平行,同位角相等性质:两直线平行,同位角相等 性质:两直线

27、平行,内错角相等性质:两直线平行,内错角相等性质:两直线平行,同旁内角互补性质:两直线平行,同旁内角互补 abc1234探究点二:平行线的性质的应用探究点二:平行线的性质的应用 例例 如图所示是一块梯形铁片的残余部分,如图所示是一块梯形铁片的残余部分,量得量得A=100, B=115,梯形另外两个,梯形另外两个角各是多少度?角各是多少度?DACB解:解:梯形上下底互相平行梯形上下底互相平行AA与与D D互补,互补, B B与与C C互补互补CC1801801151156565DD1801801001008080 1两直线被第三条直线所截,则两直线被第三条直线所截,则( ) A同位角相等同位角相

28、等B内错角相等内错角相等 C同旁内角互补同旁内角互补 D以上都不对以上都不对 2如果一个角的两边分别平行于另一个如果一个角的两边分别平行于另一个角的两边,则这两个角(角的两边,则这两个角( ) A相等相等B互补互补 C相等或互补相等或互补D无数量关系无数量关系DC课堂练习ABCD3当当ABCD时,则下列结论不成立的时,则下列结论不成立的是是( )ADAC=ACB BDAB+ABC=180CADB=DBC D BAC=ACDC 4如图所示,如图所示,ABCD,且,且BAP60,APC45 , PCD30 ,则,则_ABCDP155如图:因为如图:因为1= 2所以所以_( )所以所以3=_( )3

29、+_= 180( )ab 内错角相等,两直线平行内错角相等,两直线平行4两直线平行,同位角相等两直线平行,同位角相等5两直线平行,同旁内角互补两直线平行,同旁内角互补abcd12345解:解:AE/CF(已知)(已知)A=1 (两直线平行,同位角相等)(两直线平行,同位角相等)又又AB/CD(已知已知)1=C(两直线平行,同位角相等)(两直线平行,同位角相等)A=C A35 C35 FABCDEG1 6如图,已知如图,已知AE/CF,AB/CD,A35 ,求,求C的度数的度数 7 如图,如图,1+2=180,3=108,求求4的度数的度数 cdab2134108108判定判定已知已知得到得到得

30、到已知同位同位角角相等相等内错内错角角相等相等同旁内同旁内角角互补互补课堂小结上交作业:上交作业:教科书习题教科书习题2.5第第1,2,3,题题; 教科书习题教科书习题2.6第第1,2,3,题题;课后作业4 用尺规作角用尺规作角第二章 相交线与平行线北师版七年级下册1、知识技能目标:、知识技能目标: 会用尺规作一个角等于会用尺规作一个角等于 已知角,理解文字语言与图形语言的转换;已知角,理解文字语言与图形语言的转换; 2、数学思考目标:、数学思考目标:经历尺规作角的过程,经历尺规作角的过程, 培养学生的动手操作、独立思考的习惯;培养学生的动手操作、独立思考的习惯;3、问题解决目标:、问题解决目

31、标:培养学生利用尺规作角解培养学生利用尺规作角解决实际问题的能力;决实际问题的能力;4、情感态度目标:、情感态度目标:积极参与数学活动,产生积极参与数学活动,产生强烈的好奇心,在数学学习过程,体验成功的强烈的好奇心,在数学学习过程,体验成功的快乐。快乐。学习目标 C【设计意图设计意图】从实际背景出发,提出新的问题,激起学生从实际背景出发,提出新的问题,激起学生的求知欲望。的求知欲望。讲授新课 探究一探究一:利用尺规:利用尺规作一角等于已知角作一角等于已知角【学生活动学生活动】预习预习P55-56“P55-56“做一做做一做”尺规作角的方法。尺规作角的方法。 【思考问题思考问题】 1 1、作射线

32、、作射线时必须经过那个点?时必须经过那个点? 2 2、作三条、作三条弧弧时圆心半径分别是什么?时圆心半径分别是什么? 3 3、作图时主要做了哪些基本图形?、作图时主要做了哪些基本图形?【要求要求】 1.1.教师要留足够时间,组织学生认真预习教师要留足够时间,组织学生认真预习; 2.2.学生学生独立思考完成,标出存在困难的地方。独立思考完成,标出存在困难的地方。尺规作一个角等于已知角 【突破突破重点重点的措施的措施】1 1、适时组织小组交流解决疑惑;、适时组织小组交流解决疑惑;2 2、利用多媒体演示,加深学生作图印象;、利用多媒体演示,加深学生作图印象;3 3、教师点拨引导学生总结口诀来理解作法。、教师点拨引导学生总结口诀来理解作法。 【预设存在困难预设存在困难】 1、作图顺序记不清或容易混、作图顺序记不清或容易混作一个角等于已知角 【设计意图设计意图】探究一这样设计,是让学生经历知识的形成过探究一这样设计,是让学生经历知识的形成过程,让学生主动的发现问题,解决问题,体现学生主体地位。程,让学生主动的发现问题,解决问题,体现学生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论