下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、习题课课时目标1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,理解简单的分段函数,并能简单应用1下列图形中,不可能作为函数yf(x)图象的是()2已知函数f:AB(A、B为非空数集),定义域为M,值域为N,则A、B、M、N的关系是()AMA,NBBMA,NBCMA,NBDMA,NB3函数yf(x)的图象与直线xa的交点()A必有一个B一个或两个C至多一个D可能两个以上4已知函数f(x)若f(a)3,则a的值为()BCD以上均不对5若f(x)的定义域为1,4,则f(x2)的定义域为()A1,2
2、B2,2C0,2D2,06函数y的定义域为R,则实数k的取值范围为()Ak4B0k4C0k4Dk4或k0一、选择题1函数f(x),则f()等于()Af(x) Bf(x)2已知f(x21)的定义域为,则f(x)的定义域为()A2,2B0,2C1,2D,3已知集合Aa,b,B0,1,则下列对应不是从A到B的映射的是()4与y|x|为相等函数的是()Ay()2ByCyDy5函数y的值域为()A(,)(,)B(,2)(2,)CRD(,)(,)6若集合Ax|y,By|yx22,则AB等于()A1,) B(1,)C2,) D(0,)题号123456答案二、填空题7给出四个命题:函数是其定义域到值域的映射;
3、f(x)是函数;函数y2x (xN)的图象是一条直线;f(x)与g(x)x是同一个函数其中正确的有_个8已知f(1)x2,则f(x)的解析式为_9已知函数f(x)则f(f(2)_.三、解答题10若3f(x1)2f(1x)2x,求f(x)11已知f(x)若f(1)f(a1)5,求a的值能力提升12已知函数f(x)的定义域为0,1,则函数f(xa)f(xa)(0a)的定义域为()ABa,1aCa,1aD0,113已知函数f(x)(1)求f(3),ff(3);(2)画出yf(x)的图象;(3)若f(a),求a的值1函数的定义域、对应关系以及值域是构成函数的三个要素事实上,如果函数的定义域和对应关系确
4、定了,那么函数的值域也就确定了两个函数是否相同,只与函数的定义域和对应关系有关,而与函数用什么字母表示无关求函数定义域时,要注意分式的字母不能为零;偶次根式内的被开方式子必须大于或等于零2函数图象是描述函数两个变量之间关系的一种重要方法,它能够直观形象地表示自变量、函数值的变化趋势函数的图象可以是直线、光滑的曲线,也可以是一些孤立的点、线段或几段曲线等3函数的表示方法有列举法、解析法、图象法三种根据解析式画函数的图象时,要注意定义域对函数图象的制约作用函数的图象既是研究函数性质的工具,又是数形结合方法的基础习题课双基演练1CC选项中,当x取小于0的一个值时,有两个y值与之对应,不符合函数的定义
5、2C值域N应为集合B的子集,即NB,而不一定有NB.3C当a属于f(x)的定义域内时,有一个交点,否则无交点4A当a1时,有a23,即a1,与a1矛盾;当1a2时,有a23,a,a(舍去);当a2时,有2a3,a与a2矛盾综上可知a.5B由1x24,得x24,2x2,故选B.6B由题意,知kx2kx10对任意实数x恒成立,当k0时,10恒成立,k0符合题意当k0时,k24k0,解得0k4,综上,知0k4.作业设计1Af()f(x)2Cx,0x23,1x212,f(x)的定义域为1,23CC选项中,和a相对应的有两个元素0和1,不符合映射的定义故答案为C.4BA中的函数定义域与y|x|不同;C中
6、的函数定义域不含有x0,而y|x|中含有x0,D中的函数与y|x|的对应关系不同,B正确5B用分离常数法y2.0,y2.6C化简集合A,B,则得A1,),B2,)AB2,)71解析由函数的定义知正确满足f(x)的x不存在,不正确又y2x (xN)的图象是一条直线上的一群孤立的点,不正确.又f(x)与g(x)的定义域不同,也不正确8f(x)x21(x1)解析f(1)x2()2211(1)21,f(x)x21.由于11,所以f(x)x21(x1)94解析20,f(2)(2)24,又40,f(4)4,f(f(2)4.10解令tx1,则1xt,原式变为3f(t)2f(t)2(t1),以t代t,原式变为3f(t)2f(t)2(1t),由消去f(t),得f(t)2t.即f(x)2x.11解f(1)1(14)5,f(1)f(a1)5,f(a1)0.当a10,即a1时,有(a1)(a5)0,a1或a5(舍去)当a10,即a1时,有(a1)(a3)0,无解综上可知a1.12B由已知,得又0a,ax1a,故选B.13解(1)x1时,f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度数据中心服务器租赁合同
- 2024医院病房清洁服务合同
- 2024年展览保险服务协议
- 2024年度0kv线路工程建设的合作开发合同
- 2024年度婚礼主持委托合同
- 2024年定制版太阳能系统维护合同
- 2024年度太阳能热水系统安装合同
- 2024年度城市供水供电供气合同
- 2024年三人股东责任承担协议
- 04版建筑工程合同
- GDX2包装机组工艺流程简介
- 个人独资企业有限公司章程(模板)
- 小学生安全用电知识(课堂PPT)
- 装饰自己的名字说课稿
- 人教版(PEP)四年级上册英语unit 1 My classroom图文完美版(课堂PPT)
- 幼小衔接中存在的问题及对策
- 中级汉语期末考试测试题(共5页)
- 《国家电网公司安全生产事故隐患排查治理管理办法》(国家电网安监[
- 水保监理报告范文
- xx售楼部钢结构及玻璃幕墙工程拆除施工方案
- 云南沿边高校青年教师发展现状及问题分析
评论
0/150
提交评论