初中数学教案_第1页
初中数学教案_第2页
初中数学教案_第3页
初中数学教案_第4页
初中数学教案_第5页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初中数学教案 篇一:角平分线的性质 (一)创设情境 导入新课 不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法? 如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢? 设计目的:能聚拢学生的思维为新课的开展创作了良好的教学氛围。 (二)合作交流 探究新知 (活动一)探究角平分仪的原理。具体过程如下: 播放奥巴马访问我国的录像资料-引出雨伞-观察它的截面图,使学生认清其 中的边角关系-引出角平分线;而且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。 设计目

2、的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。 (活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得. 分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。 讨论结果展示: 教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法: 已知:AO B. 求作:AOB的平分线. 作法: (1)以O为圆心,适当长为半径作弧,分别交OA、OB于

3、M、N. (2)分别以M、N为圆心,大于12MN的长为半径作弧.两弧在AOB内部交于点C. (3)作射线OC,射线OC即为所求. 设计目的:使学生能更直观地理解画法,提升学习数学的兴趣。 议一议: 1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗? 2.第二步中所作的两弧交点一定在AOB的内部吗? 设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。 学生讨论结果总结: 1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线. 2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在AOB的内部,也可能在AO

4、B的外部,而我们要找的是AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是AOB的平分线了. 3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可. 4.这种作法的可行性可以通过全等三角形来证明. (活动三)探究角平分线的性质 思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对? 这样设计的目的是加深对全等的认识。 篇二:正弦和余弦 一、素质教育目标 (一)知识教学点 使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实. (二)能力训练点 逐步培养学生会观察、比较、分析、概括等逻辑思维能力

5、. (三)德育浸透点 引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯. 二、教学重点、难点 1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实. 2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论. 三、教学步骤 (一)确定目标 1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米? 2.长5米的梯子以倾斜角CAB为30靠在墙上,则A、B间的距离为多少? 3.若长5米的梯子以倾斜角40架在墙上,则A、B间距离为多少? 4.若长5米的梯子靠在墙上,使A、B间距为

6、2米,则倾斜角CAB为多少度? 前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来. 通过四个例子引出课题. (二)整体感知 1.请每一位同学拿出自己的三角板,分别测量并计算30、

7、45、60角的对边、邻边与斜边的比值. 学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,之后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长. 2.请同学画一个含40角的直角三角形,并测量、计算40角的对边、邻边与斜边的比值,学生又高兴地发现,不管三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗? 这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知. (三)重点、难点的学习与目标完成过程 1.通过动手实验,学生会

8、猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独力完成. 2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导: 若一组直角三角形有一个锐角相等,可以把其 顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3落在同一条直线上,则斜边AB1,AB2,AB3落在另一条直线上.这样同学们能解决这个问题吗?引导学生独力证明:易知,B1C1B2C2B3C3,AB1C1AB2C2AB3C3, 形中,A的对边、邻边与斜边的比值,是一

9、个固定值. 通过引导,使学生自己独力掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育浸透. 而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用. 练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来. (四)总结与扩展 1.引导学生作知识总结:本节课在复习勾股定理及含30角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的. 教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种

10、创新精神,变被动学知识为主动发现问题,培养自己的创新意识. 2.扩展:当锐角为30时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣. 四、布置作业 本节课内容较少,并且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念. 五、板书设计 篇三:正弦和余弦(二) 一、素质教育目标 (一)知识教学点 使学生了解一个锐角的正弦(余弦)值与它的余

11、角的余弦(正弦)值之间的关系. (二)能力训练点 逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力. (三)德育浸透点 培养学生独立思考、勇于创新的精神. 二、教学重点、难点 1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用. 2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用. 三、教学步骤 (一)确定目标 1.复习提问 (1)、什么是A的正弦、什么是A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施. (2)请同学们

12、回忆30、45、60角的正、余弦值(教师板书). (3)请同学们观察,从中发现什么特征?学生一定会回答“sin30=cos60,sin45=cos45,sin60=cos30,这三个角的正弦值等于它们余角的余弦值”. 2.导入新课 根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题. (二)、整体感知 关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30、45、60角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理

13、,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明. (三)重点、难点的学习和目标完成过程 1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃. 2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90-A),cosA=sin(90-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够

14、的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神. 3.教师板书: 任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值. sinA=cos(90-A),cosA=sin(90-A). 4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又波及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固. 已知A和B都是锐角, (1)把cos(90-A)写成A的正弦. (2)把sin(90-A)写成A的余弦. 这一练习只能起到巩固定理的作用.为了运用定理,教材安置了例

15、3. (2)已知sin35=0.5736,求cos55; (3)已知cos476=0.6807,求sin4254. (1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出B与A互余,(2)、(3)让学生自己发现35与55的角,476分4254的角互余,进而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完以后,最好将题目变形: (2)已知sin35=0.5736,则cos_=0.5736. (3)cos476=0.6807,则sin_=0.6807,以培养学生思维能力. 为了配合例3的教学,教材中配备了练习题2. (2)已知sin6718=0.9225,求cos2242; (3)已知cos424=0.9971,求sin8536. 学生独力完成练习2,就说明定理的教学较成功,学生基本会运用. 教材中3的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论