不定积分的概念与基本公式教(学)案_第1页
不定积分的概念与基本公式教(学)案_第2页
不定积分的概念与基本公式教(学)案_第3页
不定积分的概念与基本公式教(学)案_第4页
不定积分的概念与基本公式教(学)案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 .江阴职业技术学院高等数学课堂教学教案课程名称高等数学教师姓名教 研 室数理教研室教学对象授课时间2014.11.25 星期二第1 节教学内容4.1 不定积分的概念与基本公式学时数2教 材高等数学教学目的理解原函数、不定积分的概念理解不定积分的几何意义、物理意义及经济意义并能应用不定积分解决简单问题熟练掌握基本积分公式熟练掌握直接积分法教学内容提要1.原函数的概念2.不定积分的概念3.不定积分的几何意义、物理意义及经济意义4.基本积分公式5直接积分法重点与难点重点:不定积分的概念、基本积分公式、直接积分法难点:不定积分的概念更新补充删节内容教学组织与设计一、新课引入二、新课讲授三、举例应用四

2、、课堂练习五、课堂小结六、布置作业作业习题4主任意见教学实施情况小结§51不定积分的概念与基本公式(第一节课)引入:教师:请一位同学走到教室门口,然后再倒退着走回来。教师问:倒过来走是什么感觉,有没有体会到和正常走路不一样?学生答:不一样。教师:相对于正着走,倒过来走是一种逆向过程,就如同数学里:加与减,乘与除互为逆运算一样。那么和我们前面学过的求导数相对的又是什么呢?这就是我们今天要学习的“不定积分”。要学习“不定积分”,需要一点刚才那样“倒着走”的逆向思维。教师:正因为倒着走不习惯,因此我们先要通过练习来加以巩固,慢慢地寻找感觉。已知导函数要求在括号里填写被求导之前原来的函数。(

3、1) (9) (2) (10) (3) (11) (4) (12) (5) (13) (6) (14) (7) (15) (8) 被求导之前原来的函数我们给它一个简称:原函数。一、原函数的概念1、定义:若在某区间,则称的一个原函数。如:是的一个原函数问:原函数加上一个常数还是原函数吗?答:,等也是的原函数。2、一般地,若有一个原函数,则有无数个原函数。问:是否能表示的全部原函数?答:能,证明如下设为的任一原函数即故3、定理:若有一个原函数,则表示的所有原函数。这的所有原函数,我们给它一个名称:不定积分。二、不定积分的概念1定义:若在某区间,则称为的不定积分,记作,即。其中积分号(写法是拉长的S

4、),被积函数,被积表达式,积分变量,积分常数。注1:积分常数不可丢,否则只得到一个原函数,而不定积分表示一个函数的所有原函数。注2:检验积分做得对不对,只需要看原函数的导数是否等于被积函数。例1(1)(2)(3)(4)例2.验证积分(1)(2)2不定积分与导数、微分的关系(1),(2),这说明求不定积分与求导、求不定积分与求微分是互为逆运算(除了相差一个积分常数外)例3求(1) (2) (1)(2)什么样的函数一定有不定积分?3不定积分存在的充分条件:连续函数一定有不定积分。自问:除了连续函数,还有其他函数会有不定积分吗?自答:其他函数也可能会有不定积分。三、不定积分的几何意义、物理意义及经济

5、意义1、几何意义:的图形是一族积分曲线,在横坐标相同的点它们的切线彼此平行。例4已知某曲线上任一点处切线的斜率为,(1)求该曲线方程;(2)若此曲线过,求该曲线方程。解:(1)设曲线方程为,则,该曲线方程为。(2)由,得,所以该曲线方程为。2、物理意义:若变速直线运动物体速度,则运动方程。例5 某物体从静止开始作自由落体运动,其速度为,求运动方程。解:,把代入得,所以。3、经济意义:边际成本的积分是成本,边际收益的积分是收益,边际利润的积分是利润。例6 某工厂生产某产品的固定成本是1000元,边际成本是元,求成本。解:,由知所以四、基本积分公式对照求导公式,边问边答边写:12345678910

6、111213课堂小结1.原函数的概念(被求导之前原来的函数、不唯一、+C表示全部原函数)2.不定积分的概念(所有原函数、与求导互为逆运算、怎么验证)3.不定积分的几何意义、物理意义及经济意义(是不定积分运用的落脚点)4.基本积分公式(利用导数公式逆推,熟练掌握)布置作业 习题4 P86 1 2直接积分法 (第二节课)一、 复习回顾1、 定义 的全体原函数所具有的一般形式 2、 基本公式()3、 运算性质 二、新课讲授直接积分法利用变形凑成公式形状的积分例1、解:原式= =积分运算的性质只有关于函数的加减法的积分,如果遇到函数间的乘除法的积分该如何处理?例2、解:原式例3、解:原式=【贴士】同底的幂、同指数的幂可用指数的性质加以合并,进而化为加减形式例4、解:原式例5、(可略讲)解:原式=【贴士】“”形可以通过加减常数、通分的逆运算等办法化为与的和差形式积分公式中有许多三角函数形式,碰到三角函数形式的积分运算常常会用到高中所学的三角恒等关系例6、求解:原式=例7、求解:原式【贴士】常用恒等公式: 例8、求解:原式=例9、求解:原式【贴士】常用恒等公式:练习巩固:计算下列积分 课堂小结:由这一节得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论