人口增长数学模型_第1页
人口增长数学模型_第2页
人口增长数学模型_第3页
人口增长数学模型_第4页
人口增长数学模型_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2014年南京邮电大学数学建模竞赛论文2014年南京邮电大学数学建模竞赛题目:计划生育政策调整对人口数量、结构及其影响的研究摘要本论文针对2007年国家人口发展战略研究课题组发布的国家人口发展战略研究报告中关于“计划生育实施以来,全国少生了4亿多人,使世界60亿人口日推迟4年”的论述做了研究。论文根据计划生育实施之前1949-1980年的人口普查数据,使用最小二乘法拟合并建立灰色预测模型,利用数学软件,预测出了如果未实行计划生育现今中国人口的数量,从而对研究报告中“少生4亿”的结论产生质疑。同时,本论文针对2006年全国老龄工作委员会发布的中国人口老龄化发展趋势预测研究报告中关于“2051年,

2、中国老年人口规模将达到峰值4.37亿,老龄化水平基本稳定在31%左右”的论述做了研究,根据近几年的人口老龄化程度、老龄人口比重、老龄人口数量、死亡率的变化等诸多因素,建立阻滞增长模型(Logistic模型),预测40年到70年的老龄人口数量和老龄化率,验证了报告中的关于老龄人口数目持续增加、数目庞大、老龄化严重的预测。论文基于近期的计划生育调整、“单独二孩”政策的逐步实施、城镇化所导致的人口迁移等现象,结合江苏省的实际情况,利用差分方程模型、LESLIE矩阵,分析新政策对江苏人口数量的影响。论文从出生率着手,重点研究了新政策对江苏省14岁以下儿童、60岁以上老人的影响,分析了儿童和老人数量的变

3、化对人口结构、教育改革、养老的直接影响作用。关键字单独二孩、人口老龄化、Logistic 模型、差分方程模型、LESLIE模型一、问题描述人口的数量和结构是影响经济社会发展的重要因素。从20世纪70年代后期以来,我国鼓励晚婚晚育,提倡一对夫妻生育一个孩子。该政策实施30多年来,有效地控制了我国人口的过快增长,对经济发展和人民生活的改善做出了积极的贡献。但另一方面,其负面影响也开始显现。党的十八届三中全会提出了开放单独二孩,今年以来许多省、市、自治区相继出台了具体的政策。政策出台前后各方面人士对开放“单独二孩”的效应有过大量的研究和评论。人口问题有着悠久的研究历史,也有不少经典的理论和模型。这些

4、理论和模型都依赖生育模式、生育率、死亡率和性别比等多个因素。这些因素与政策及人的观念、社会文化习俗有着紧密的关系,后者又受社会经济发展水平的影响。研究中用到的数据的置信水平也与调查统计有关。请收集一些典型的研究评论报告,根据每十年一次的全国人口普查数据,建立模型,对报告的假设和某些结论发表自己的独立见解,并针对深圳市或其他某个区域,讨论计划生育新政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。二、问题分析(1)针对本论文针对2007年国家人口发展战略研究课题组发布的国家人口发展战略研究报告中关于“计划生育实施以来,全国少生了4亿多人,使世界60亿人口日推迟4年。”的论述

5、做了研究。我们搜集了大量关于计划生育实施前也就是1982年之前的人口数据。因为建国初年坚持着“人多力量大”的口号,人口增长几乎没有受到政策层面的影响,鼓励生育成为那个时期的主题。然而,人口的增长受环境、经济等因素的影响,不能无休止的增长,因而,我们选择灰色预测模型来分析计划生育实施前的人口状况,使得人口增长的预测更能贴合之前的增长趋势。通过简单的最小二乘法,拟合1982年之前的数据,并且利用灰色预测模型,预测1990、2000、2005、2010年的人口,将其与这四年的实际情况进行对比,根据预测与实际的差值,分析计划生育政策对中国人口总数的影响程度。人口老龄化的加剧又是中国的另一个国情。自上世

6、纪九十年代以来,我国老龄人口急剧增加,二十一世纪初,进入老龄化社会。中国人口老龄化发展趋势预测研究报告中提到“2051年,中国老年人口规模将达到峰值4.37亿。这一阶段,老年人口规模将稳定在3-4亿,老龄化水平基本稳定在31%左右”。随着医疗水平的提高,老龄人口死亡率已经降到很低的水平,短期内将继续维持。由于人口惯性的影响,大量人口涌入老龄人口,老龄人口数量急剧上升。因此,研究老龄人口数量更适合传统的阻滞增长模型,可以综合考虑近几年的人口老龄化程度、老龄人口比重、老龄人口数量、死亡率的变化等诸多因素,建立阻滞增长模型(Logistic模型),预测未来40年到70年的老龄人口数量和老龄化率。与官

7、方的报告进行比较,探讨老龄化的严重性。(2)根据近期国家调整的计划生育新政策,“单独二孩”政策会直接影响妇女的生育率。然而,由于我国人口结构、经济结构复杂,关于“单独二孩”政策的影响不能一概而论。农村、城市的差异,不同地区经济发展水平的差异,各地区采取不同的新政策。生育第二个孩子和生育第一个孩子的妇女叠加,符合条件的单独夫妇是否选择生育二孩更多得取决于他们的意愿。再加之,新政策实施不久,具体的理论和实践数据都不够成熟,因此建立数学模型的难度更大。我们简化数学模型,从年龄、地区差异下手,假设已知的和比较可靠的概率数据,建立差分方程模型,使用Leslie矩阵模型,分析按年龄分组的人口模型。同时,我

8、们考虑城镇化和人口迁移的因素,分析人口移动对人口结构的影响。三、模型假设3.1 假设所有表征和影响人口变化因素都是在整个社会人口平均意义下确定的;3.2 预测期间出生和死亡水平比较稳定,即使有变化,也比较有规律的;3.3 由于预测全国人口数,人口当作一个整体,假设近几年我国的迁入迁出人口基本保持平衡;3.4 假设对未来人口的预测能最大可能符合人口发展的未来趋势;3.5 假设任何影响人口变化的因素在未对人口造成影响之前不会因某种特殊原因自动消失;3.6 预测用的基础人口总数、出生率等与实际相近,比较准确。四、符号说明:灰色预测模型的灰色系数:老年人口总数:老年人口增长率:时间(年数):将表示为的

9、函数:某一年老年人口数的初始值:自然资源和环境条件所能容纳的最大人口数量:以自变量建立函数中函数的比例系数(以下符号均代表在“单独二孩”政策前严格执行计划生育的情况) 分别表示乡村、镇、市第年岁人口的死亡率 分别表示乡村、镇、市第年岁的人口数 分别表示乡村、镇、市第年岁的女性生育率 分别表示乡村、镇、市第年岁人口的女性比 分别表示乡村、镇、市第年的婴儿死亡率 分别表示乡村、镇、市第年的出生人数 分别表示乡村、镇、市第年岁女性的生育模式 分别表示乡村、镇、市第年的总和生育率 分别表示乡村、镇、市第年的总人数 分别表示乡村、镇、市第年岁女性的总人数分别表示乡村、镇、市第年岁女性的死亡率 分别表示乡

10、村、镇、市第年岁男性的总人数分别表示乡村、镇、市第年岁男性的死亡率 表示为迁移人口中女性所占比例 分别表示乡村、镇、市出生人口中女性所占的比例(以下符号均代表在计划生育新政策“单独二孩”下的情况)分别表示乡村、镇、市第年岁的女性生育二孩的概率; 分别表示乡村、镇、市已经有过生育的女性比例 分别表示乡村、镇、市符合“单独二孩”政策的比例分别表示乡村、镇、市受新政策影响第年岁的女性生育率;五、模型的建立与求解5.1 使用最小二乘法和灰色预测模型分析计划生育实施前的人口数据5.1.1 使用MATLAB进行最小二乘法分析19491980全国人口数据(单位:万)年份1949195219581961196

11、419671970197319761982人口54167574826146565346664577049976032825428876193267根据上表数据,将我国1949年至1982的总人口数按每三年一组共10组输入MATLAB,并进行数据拟合画图,得到图一输入的程序为x=1949,1952,1955,1958,1961,1964,1967,1970,1973,1976,1979,1982;y=54167,57482,61465,65346,66457,70499,76032,82542,88761,93267,97542,101654;plot(x,y);p=polyfit(x,y,6)

12、; z=polyval(p,x) ; plot(x,y,'*',x,z,'r')接着由输出的结果来看利用最小二乘法拟合得到的数学方程为根据以上拟合的方程得到计划生育实施后的人口预测曲线 根据计划生育实施前数据拟合的1990-2010人口数据与真实数据统计表(单位:亿)年份1990200020052010人口拟合数目12.815.017.419.1实际人口数11.612.913.313.75.1.2 使用灰色预测模型分析由原始数据得 (k=1,2.6)构造累加生成序列得到 (k=1,2.6)构造数据矩阵和数据向量,得到 计算 : 所以 把和 带入时间响应方程 因为

13、=602, = ,所以时间响应方程为 可以得到 1442.572882403.005343500.388484754.250476186.90406 840.57288910.432461094.383141253.861991432.65359所以求得实际值 模型计算值 残差E(k)相对误差e(k)723840.57288-117.5728816.261809%1032910.43246121.5675411.7798%11601094.3831465.616865.656626%12951253.8619941.138013.177668%13711432.65359-61.65359-4

14、.49698%后验差检验:(1)的均值: =1030.5(2)的方差: =28.0905(3)残差的均值:= 9.819188(4)残差的方差:=78.587019(5)后验差检验: =0.27760387(6)小误差概率: 5.1.3模型分析与结论通过简单的二分法拟合和灰色预测模型的检验,通过表格和曲线图可以清晰的表明,计划生育政策对人口控制有非常明显的作用。根据2005年的拟合数据与2005年的实际人口相比,计划生育实施后全国人口确实少生4亿。然而,经过对网上各种资料的搜集,我们发现,相关研究人员是“采取了非常简单而间接的方法。换句话说,这个研究的方法还是从人口到人口,用粗出生率来模拟粗出

15、生率”,忽视了随着人们对生育的认识发展过程,忽视了经济发展对人们转变生育观念的重要作用,“30年少生4亿人”是对一个原本没有经过认真科学论证的计算并被进一步误传的说法,是为了“强行”计划生育而使用的借口。政府与政策制定者的职责在于怎样从实际出发,从百姓和社会的利益出发,制定和完善社会政策,而不能传播根据不足、缺乏事实支撑的说法,更不应把“30年少生4亿人”当作回避检讨现行生育政策、拒绝调整和改变的挡箭牌。然而,无论怎样都不能否认,长达四十年之久的计划生育,长达三十年的计划生育基本国策,确实为抑制人口过快增长,提高人口素质做出了不可替代的作用,政策本身应当继续坚持和发展。5.2 阻滞增长模型对人

16、口老龄化的研究5.2.1 组织增长模型的建立阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对老年人口增长率的影响上,使得随着老年人口数量的增加而下降。若将表示为的函数。则它应是减函数。于是有 (1)对的一个最简单的假定是,设为的线性函数,即 (2)设自然资源和环境条件所能容纳的最大老年人口数量,当时老年人口不再增长,即增长率,代入(2)式得,于是(2)式为 (3)将(3)代入方程(1)得: (4)解方程(4)可得 (5) 5.2.2模型求解(1)将2004年看成初始时刻即,则2005为,以次类推,以

17、2013年为作为终时刻。用函数(5)对表1中的数据进行非线性拟合,运用Matlab编程得到相关的参数,可以算出可决系数(可决系数是判别曲线拟合效果的一个指标):年份200420082010201120122013老年人口总数(单位:亿)1.431.591.781.85 1.942.02近几年老龄人口数量统计表(2)由可决系数来看拟合的效果比较理想。所以得到中国各年份人口变化趋势的拟合曲线: (6)(3)根据曲线(6)我们可以对2020()年、2025年()、2030年()2040年()及2050年()进行预测得(单位:亿):5.2.3 模型分析根据往年的老龄人口数据,我们建立组织增长模型,预测

18、了30年到40年的老龄人口数,预测结果如下表 老龄人口预测结果年份20202025203020402050老年人口总数(亿)2.252.873.424.154.37我们自己的模型与官方发布的老龄人口预测图基本吻合,可见人口老龄化将会在未来相当长的一段时期更加严重和突出是不争的事实。四十年后 的老龄人口是一个非常恐怖的事情,会引发一系列严重的社会问题,养老、就医体制的不健全会进一步凸显人口老龄化的矛盾,成为社会发展的重要阻力。因此,我们要以老龄人口的预测为依据,提早做好应对严重老龄化社会的挑战,积极地把老年人问题摆在更加突出的地位,实现中国特色老龄化社会的平稳过度。 中国人口老龄化发展趋势预测研

19、究报告中关于老龄人口的预测图5.3 基于人口新政策的差分方程模型5.3.1 基于LESLIE矩阵的差分方程模型的建立考虑到市、镇、乡村的人口性别比例,妇女生育率以及人口的死亡率都有所差别,我们分别建立市、镇、乡村的差分方程模型。市、镇、乡村合起来即可得到江苏地区人口增长的差分方程模型。(1)首先,在不考虑人口迁移的情况下(以人口的户籍变动为准),以乡村为例,建立人口增长模型。记人口最大年龄为岁(由假设为90)。为乡村第年岁的人口数(用上标1表示乡村,上标2表示镇,上标3表示市),为乡村第年岁人口的死亡率,由人口死亡率数据为所占该类年龄段人口的千分比(),我们可以得到乡村第年岁人口的死亡率为:

20、×1000 ;于是第年岁人口数为: (1)记为乡村第年岁女性生育率,该生育率表示所有岁女性平均生育婴儿数,生育率为该年龄妇女生育子女与该类年龄妇女的千分比,为育龄区间(由假设取15到49岁为育龄区间),为乡村第年岁人口的女性比率,则乡村第年的出生人口数为 (2)考虑到婴儿并不是全部都能活到年统计时刻其中有些婴儿由于疾病等原因死亡,能够活到年统计时刻的婴儿数是,因此, 就是年到年的婴儿死亡数,记婴儿死亡率为, 则: ×1000 于是第年的婴儿数 (3)由(1)、(2)、(3)式可得在年的一岁人口数: (4)将分解为 (5)其中:是生育模式,用以调整育龄妇女在不同年龄时的生育率

21、高低,且:;是乡村妇女的总和生育率,。 记 则由(4)、(5)式可得 (6)于是我们可以得到乡村人口差分方程模型为: 将其表示为矩阵形式 ,记此处,即为LESLIE矩阵;同时,记则由上述方程得:运用同样方法可分别得出镇与城的人口差分方程模型为:其中,与,的推导方法相同。(2)受计划生育新政策“单独二孩”政策的影响,女性生育率有了比较明显的变化,女性生育率更多的受到适龄夫妇对于生育意愿的影响 将(1)中的替代为此时的,此时新的模型即是在计划生育新政策影响下的人口模型。(3)由于市,镇,乡村之间并不是相互独立的,他们之间有着频繁的人口流动,在实际问题中不能被忽视,下面我们在考虑人口迁移的情况下对上

22、述模型进行改进。考虑到在实际发生的人口迁移中多数由于贫富差距引起,我们在对模型进行改进时仅考虑乡村、镇、市的人口净迁移人口量,可以看到镇、市人口净迁移量都为正。我们假设每年乡村到城镇的人口迁移数为上年人口总数的倍,注意到一个地区人口数量与经济发达程度有很大联系,我们以市,镇总人口的比例来分配乡村到其人口迁移的数量。由于我们以每年的各个年龄段为预测变量,必须考虑各个年龄段的迁移数量,为简化起见我们以2000至2010年各个年龄段十年人口数量之和占十年总人口数量的比例分配各个年龄段的迁移数量,并记为年龄所占比例。记 ,分别为乡村,镇,市在第年的总人口数,显然满足: ,由以上分析,第年乡村1岁人口数

23、量为:岁人口的数量应为: 第年镇的1岁人口数量为: 岁人口的数量应为: 第年市的1岁人口数量应为: 岁的人口数量应为: 于是我们可以得到在考虑人口迁移的情况下市,镇,乡村的差分方程模型为: 5.3.2模型参数的设定我们根据所建立模型,需要以下几个输入量:总和生育率,婴儿死亡率,生育模型,每年乡村到城镇的人口迁移数为上年人口总数的倍数,乡村到城镇的人口迁移中女性所占比例,各年龄人口的死亡率,出生人口中女性所占比例,总人口数;根据国家统计局发布的第六次人口普查数据和第五次人口普查数据,我们得到1987年到2010年中每年的江苏省总人口数。可以作为模型预测的初值。通过对其时间序列分析,得出在很短时间

24、内,都稳定到某一值:0.4552732020.4588594280.472078522本论文只关注从2000起,未来45年江苏人口的发展趋势。由于社会环境稳定,可以简单地认为未来45年中,各年龄人口的死亡率保持一定。 国家政策可以影响乡村到城镇的人口迁移中女性所占比例及迁移总量的倍率。在以下求解中,我们可以分析不同值下人口增长曲线的变化。 同时,国家计划生育政策也将影响总和生育率,为了保持社会经济的稳定发展,应该把总和生育率控制在1.8左右。由于乡村与城镇总和生育率的不同,我们将各生育率定为如下:2.01.81.6根据2010中国卫生统计年鉴上1991年至2009年婴儿死亡率的变化,即中国儿童

25、发展纲要(20012012年)提出的每10年降低20个百分点8。经过数据处理,得出,2050年婴儿死亡率10.48.87.5则可以得出,在未来45年里,乡、镇、市总和生育率为17.4,12.9,8.8。我们首先对模型(3)运用Matlab编程对其参数进行分析,由上所定参数,并且取 0.5。此时仅有未知,为分析其对总人口数变化规律的影响,分别令其取0.01,0.001,0.0001。5.3.3模型分析经过模型的求解之后,我们分析了各个年份的女性生育率变化情况年份2007200820092010201120122013生育率1.41481.41901.42711.44971.49231.51081

26、.5215年份2014201520162017201820192020生育率1.54971.57761.60001.61531.62061.62931.6405江苏省女性生育率变化统计图由统计表尤其是统计图的走向可以清晰看出,适龄女性的生育率从2006年以来就一直呈上升态势,尤其是在20142018年,生育率增长最为迅速,之后趋于稳定。由此可见,“单独二孩”政策对女性生育率的影响相当明显,生育率由之前的严重偏低逐渐走向正常化水平,对缓解老龄化带来的负面影响起到了重要的作用。我们利用预测出的女性生育率用同样的方法也预测出了20102050年014岁人口总数江苏省2000-2050年014岁人口总

27、数统计图(单位:百万)由上图可以看出,尽管014岁的人口总数在20002050这50年间出现了增长的拐点,即在2020年出现了0-14岁人口的极值,但在2010年之后开始了明显的下降,可见,尽管“单独二孩”政策在短期内会作用于生育率但生育人口的绝对值依旧是继续其下降趋势。5.4 人口老龄化形式依旧严峻年份201020202030204020500-14岁总人口(万)1023.9281206.65311169.2031086.776999.953 根据之前的对于新生幼儿人口数目和老年人口模型的求解,针对014岁人口比例和老龄人口比例,建立如下图表:依据本论文前面论述的人口老龄化的部分,我们利用江

28、苏省的数据重新建立了人口老龄化的阻滞增长模型,得出的结论基本与全国的一致。从近期来看,人口老龄化速度远远大于新生儿的增长速度,老龄人口的比例远远大于幼儿人口比例,人口老龄化所带的诸如养老、就医等一系列问题暂依旧无法得到明显缓解。然而,此次计划生育新政策的调整昭示着我国的生育政策逐步的趋于理性,会产生一个生育小高峰,从长远来看,为我国的人口发展注入了新的活力。然而,我们必须注意到,人口老龄化是一个长期严重的问题,它将贯穿全国包括江苏省的整个21世纪,因此,我们应该更加稳定我们生育政策,及时调整,为我国人口发展和整个经济社会发展注入新的动力。蓝色:老年人口比例红色:0-14岁人口比例2010年20

29、50年60岁以上及0-14岁人口比例预测统计图5.5 幼儿人口的下降为教育改革提供契机根据之前的论述,我国的生育率将保持一个比较低的水平,014岁儿童数量继续减少。长期的严格计划生育政策已经让每年小学、高等院校的入学人数在下降,为我国教育体制改革的难得契机。我们会看到普通教育会愈加的规范化,之前出现的膨胀式的发展已经不会再出现。教育主管部门应该合理地利用这个契机,加快教育体制改革,进一步提升人口素质,提升全民的思想道德素质和科学文化素质。然而,依旧庞大的幼儿基数和城镇化的加速推进,幼儿教育的短板愈加的凸显,人们对教育的要求更加的个性化,加之新出台的单独二孩政策更是会让幼儿教育雪上加霜,因此,国家应更加注重幼儿教育,实现幼儿入园的普遍化,提升

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论