版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 走进数学世界1.1 与数学交朋友 备课时间:9.3 授课时间:9.10教学目的: 1、使学生初步到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识; 2、使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。教学分析:重点:加强数学意识;难点:数学能力的培养。教学过程:一、与数学交朋友1、数学伴我们成长人来到世界上的第一天就遇到数学,数学将哺育着你的成长。数学知识开阔了你的视野,改变了你的思维方式,使你变得更聪明了。(当你还在母亲体内时,医生就给你听胎心、量体温,当你出生时给你称体重都用到数学,所以数学是与你的生命同在。)从生活的一系列人生活动中,我们会逐渐
2、意识到这一切的一切都和数、数的运算、数的比较、图形的大小、图形的形状、图形的位置有关。另外,数学知识开阔了你的视野,改变了你的思维方式,使我们变得更聪明。2、人类离不开数学(从人类社会产生和发展中数的产生过程充分说明数学是人类社会发展的必然产物,人类离不开数学。)自然界中的数学不胜枚举。如:蜜蜂营造的峰房;电子计算机等等。从生活中的常见的天气预报图,从经济生活中的股票指数,到某些图案的组成:3、人人都能学会数学数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学。学好数学要对数学有兴趣,要有刻苦钻研的精神,要善于发现和提出问题,要善于独立思考。学好数学还要关于把数学应用于实际
3、问题。(举生活中善于学习的例子,激发学生学习的积极性)二、激发训练:三、作业巩固:教学反思:新课标明确告诉我们,评价已不再是教师的专利了,应把评价的主动权还给学生。让学生在和谐的学习氛围中互相质疑、互相欣赏、互相帮助才能把学生吸引住。第一章 走进数学世界1.2 让我们来做数学备课时间:9.4 授课时间:9.11教学目的: 1、使学生对数学产生一定的兴趣,获得学好数学的自信心;2、使学生学会与他人合作,养成独立思考与合作交流的习惯;3、使学生在数学活动中获得对数学良好的感性认识,初步体验到什么是“做数学”。教学分析:重点:如何培养学生对数学的兴趣;难点:学生对数学的感性认识。教学过程:一、让我们
4、来做数学:1、跟我学要正确地解数学题,需要掌握数学题的方法。例:如图所示的的方格图案中多少个正方形?2、试试看例:在如图中,填入1、2、3、4、5、6、7、8、9这9个数,使每行、每列及对角线上各数的和都为15。例:在上图中,已经填入了1至16这16个数中的一些数,请将剩下的数填入空格中,使每行、每列及对角线上各数的和都为34。(提示这种数学问题可用于轮船集装箱装卸,使学生体会数学的应用价值,深深埋下学习数学的决心。)例:红旗小学学生张勇和他的爸爸、妈妈准备在国庆节外出旅游。春光旅行社的收费标准为:大人全价,小孩半价;而华夏旅行社不管大人小孩,一律八折。这两家旅行社的基本价都一样(每人100元
5、),你认为应该去哪家旅行社较为合算?三、知识小结:通过以上两节的学习,我们要一定喜欢上它,并希望它天天陪伴你。在以后的学习中,我们将在小学的基础上学到更多新的知识。教学反思:整个教学环节让学生在主体积极参与、操作、交流、动脑、动口的探究性学习中建立概念、理解概念和应用概念。实践证明:学生学习方式的转变,能激发学生的学习兴趣,让课堂焕发师生生命的活力,让课堂更精彩。第二章 有理数2.1 正数和负数备课时间:9.6 授课时间:9.13教学目的:1、明白生活中存在着无数表示相反意义的量,能举例说明; 2、能体会引进负数的必要性和意义,建立正数和负数的数感。教学分析:重点:通过列举现实世界中的“相反意
6、义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。难点:对负数的意义的理解。教学过程:一、知识导向:本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。二、新课拆析:1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。如:0,1,2,3,2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。如:汽车向东行驶3千米和向西行驶2千米;温度是零上10°C和零下5°C;收入500元和支出2
7、37元;水位升高1.2米和下降0.7米;(盈利和亏损,运进和运出,增加和减少等)上面所列举的表示相反意义量,我们也许就会发现:如用原来所学过的数很难区分具有相反意义的量。一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“”号来表示。如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C概括:我们把这一种新数,叫做负数,如:-3,-45, 过去学过的那些数(零除外)叫做正数,如:1,2.2 零既不是正数
8、,也不是负数例:下面各数中,哪些数是正数,哪些数是负数, 1,2.3,-5.5,68,-,0,-11,+123,三、阶梯训练:1,2,3,4四、知识小结:从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。五、作业巩固: 六、每日预题:我们都学过哪些数,应该怎么样来分类?教学反思: 数学教学是数学活动的教学。数学活动必须关注全体学生,充分调动他们主动参与数学活动的积极性,使他们真切地体验、感悟和理解数学,引发数学思考,有效地建构数学知识。这样的活动才是数学课堂所需要的有效活动,才能全面地实现数学教学的目标。
9、0; 实践让我深深体会到:教学的真境界应是“朴实无华、真实有效”的。它是真实、真效、真智慧的生动过程,是师生智慧共生的乐园!第二章 有理数2.1 正数和负数2备课时间:9.7 授课时间:9.14教学目的:1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行分类判别; 2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的理解。教学分析:重点:在引进负数后,能对已有的各种数进行概括,理解有理数的意义,及有理数的两种不同分类的重要意义。难点:在对有理数的认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。教学过程:一、知识导向:通过上节课对“负数“概念的
10、引入,通过对数范围的补充及扩大,进一步引入了有理数的概念,并对扩大后的数的范围进行重新分类。二、新课拆析:1、引例:(1)请学生说出负数的特征,并指出实例说明。 (2)以第(1)题中,学生所回答的数进一步分析,不同数的不同特点。2、通过对“负数”的引入,从我们所接触的数可发现有这样几类:正整数:如1,2,34,零:0负整数:如-1,-3,-5,正分数:如,负分数:如,-0.3,由此我们有:概括:正整数、零和负整数统称为整数;正分数、负分数统称为分数;整数和分数统称为有理数。然后根据我们的概括,我们可以对有理数进行如下的分类分类一: 分类二:正整数 正整数整数 零 正有理数 正分数有理数 负整数
11、 有理数 零分数 正分数 负有理数 负整数负分数 负分数(可以让学生举出你知道的数,大家共同分类,可引起大家学习兴趣,学生有可能举出这个数,可稍作点评,为以后学习埋下伏笔。)3、有关集合的简单知识:概括:把一些数放在一起,就组成一个数的集合,简称为数集;所有的有理数组成的数集叫做有理数集;所有的整数组成的数集叫做整数集;例:把下列各数填入表示它所在的数值的圈里: -18,3.1416,0,2001,-0.142857,95% 正整数 负整数 有理数集 正分数三、巩固训练: 1,2,3四、知识小结:从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。五、作业:1 2,3,4六、每日
12、预题:什么是数轴,数轴有什么作用,应怎么样在数轴上表示数?教学反思:每个学生的认识水平不同,思维水平也存在着明显的差异。教师课前预期的设计有既定的目标,这是必要的,也是要充分考虑的。但怎样在实际课堂教学中更好地顺应学生的思维,把握学生生成的一些问题并转化为有效的教学资源,有赖于教师先进的教学理念、良好的教学素养和机智的驾驭技巧。这就要求教师在课堂上随时提醒自己,倾听学生的发言、关注学生的表情、关注学生的思维;敢于抓住新旧知识的结合点、矛盾冲突的碰撞点和学生认知的困惑点,及时的加以放大,努力使问题公开化、明确化,让更多的学生参与到问题的讨论中来.第二章 有理数 §2.2 数轴教学目的:
13、1、要求学生会正确画出数轴,初步了解有理数与数轴上点的对应关系;2、能将有理数用数轴上的点来表示。教学分析:重点:正确画出数轴,加深对数轴概念的理解。难点:应理清有理数与数轴上的点的对应关系。教学过程:一、知识导向:本节课通过对生活中温度计的认识,引出数轴,对照有理数中新增加的负数,联系生活经验,讲解数轴的概念及画法,注重有理数与数轴的对应关系。二、新课拆析:1、从两个角度引出数轴:其一,在小学学习数学时,就能用直线上依次排列的点来表示自然数;其二,温度计上有刻度,可能读出温度的度数,并且区分出是零上还是零下。2、数轴概念及画法:第一步:画一条直线(通常画成水平位置);第二步:在这条直线上任取
14、一点作为原点,用这点表示0;第三步:规定直线上从原点向右为正方向,画上箭头,而相反方向为负方向;第四步:选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次标上1、2、3、;从原点向左,每隔一个单位长度取一点,依次标上-1、-2、-3、。概括:像这样规定了原点、正方向和单位长度的直线叫做数轴。 -4 -3 -2 -1 0 1 2 3 4 3、正确在数轴上表示任何有理数:在数轴上画出表示有理数,可以先由这个数的符号确定它在数轴上原点的哪一边(正数在原点的右边,负数在原点的左边),再在相应的方向上确定它与原点相距几个单位长度,然后画上点。学生一般容易掌握整数在数轴上的表示,要联系分
15、数和小数的意义,启发学生发现和掌握分数与小数在数轴上的表示方法。例:画出数轴,并在数轴上画出表示下列各数的点: 4,-2,-4.5,0三、巩固训练:1,2,3四、知识小结:本节课从生活中的实际入手,从小学所学的知识入手,引出数轴的概念。从学习中要学生学会画出数轴,学会在数轴上表示出有理数。五、家庭作业:P25 1,2,3,4六、每日预题:在数轴上的两个数在数轴上的位置有何关系,能否根据两个在数轴上的两点的位置去判断这两个数的大小?教学反思:本节课中,相信学生,并为学生提供充分展示自己的机会,教学活动的设计力求使学生多动手,多思考,多反思,充分发挥学生的主题作用,创设实际情景,情境,给学生足够的
16、时间和空间进行充分的探索和交流,通过动手实践,自主探索,合作交流的学习方式进行有效的学习。本节课注意改进的方面是课堂最后的小结中,教师提出数轴上的点与有理数并非一一对应的关系,将学生的思想引入更深一层做的不好,在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问,与其对困难学生的帮助等,使小组合作学习更具时效性。第二章 有理数§2.2 数轴在数轴上比较数的大小备课时间:9.12 授课时间:9.19教学目的:1、通过观察数轴上点的位置关系,初步比较有理数的大小;2、初步认识图形和数量的对应关系。教学分析:重点:负数和
17、零的大小比较。难点:如何启发学生自己得到有理数的大小比较的约定,并认识其合理性。教学过程:一、知识导向:能过上节课对数轴的学习,通过对有理数与数轴上的点的对应关系,发现正数、零、负数在数轴上的位置关系,并进一步地发现三者的大小关系。二、新课拆析:1、设疑:其一:小学学会了正数及零的大小比较,但有了负数后应如何比较?其二:从数轴上的任意两个点的位置,能否判断出它们的大小关系?有无什么特点?其三:温度计上的两个不同温度的刻度在位置上有什么关系,从数值上看,有无什么特点?2、从以上的设疑中,我们是否能得到:概括:在数轴上表示的两个数,右边的数总比左边的数大。法则:正数都大于零,负数都小于零,正数大于
18、负数。3、数轴点的移动与点的数值的关系:应注意到移动的方向及移动的单位长度,并能对移动后的点,所表示的数值进行确定。反之应能说明,两个不同点的相互移动的方式,即确定两点之间的位置关系,为下一节有关绝对值的学习作基础。例:将有理数3、0、-4按从小到大的顺序排列,用“<” 号连接起来。例:通过在数轴上表示,比较下列各数的大小: -1.3,0.3,-3,-5例:在数轴上的点A:4,如果A点先向左移动5个单位,再向右移动9个单位,得到的点是B,则B表示的数是什么?三、巩固训练:P25 1、2四、知识小结:通过结合有理数在数轴上的位置,发现正数、零、负数在数轴上的位置关系,确定了正数、零、负数的
19、大小比较法则,并能通过数轴来比较任意两个非确定数的大小。五、家庭作业:P25 4、5、6、7、8六、每日预题:1、-5与5这两个数有何异同点,在数轴上表示后,在位置上有何特点?2、什么数的两个数称为相反数,如何求出任何数的相反数?教学反思:上完这节课后,感觉到本节课还有不少地方设计得不好。结合实际,我的反思如下:从学生完成学习卷的分析,学生对课本的知识掌握程度不错,能运用两种方法判断有理数的大小,都能较好地完成A组题。不足之处:在教学中,过多地推理概括有理数比较大小两种的方法,缺少学生发表自己意见,与同伴合作交流的机会。2教学的预见性还不够,时间控制的不好,学生练习时间不够充分。3比较几个有理
20、数大小的时候,学生容易正负数混淆。4学生对比较两个负分数的大小,感到比较困难。它既用到新学的两个负数比较大小的结论,又联系到两个分数比较大小的问题,学生往往只做一次比较,比较完两个绝对值的大小后,就得出结论了。教学设计的改进:对于难点的处理,可以学生讨论、讲解思路,加强学生课堂上自主学习的能力。练习方面,多设计几题学生易错的题,让学生发现问题并加以改正,使学生加深印象。3习题的设计要更加细心,层次分明。 以上是自己对这本节课教学之后的一些思考。只有根据课堂教学实际多进行反思,才能得到不断改进,不断提高。第二章 有理数§2.3 相反数备课时间:9.14 授课时间
21、:9.21教学目的:1、使学生能理解“两数互为相反数”的意义;2、会写出已知数的相反数;3、懂得简单的简化符号的运算。教学分析: 重点:能准确写出任意数的相反数,对简化符号能正确应用。 难点:相反数的意义及有理数的组成。教学过程:一、知识导向:通过举出两个相反数,进行其表现形式的特点,及两数在数轴上的位置特点,来说明所谓相反数的特征及求法。二、新课拆析:1、设疑:其一:-3与3(+3)在数的形式上有何异同点?其二:-3与3(+3)在数轴上的位置有何异同点?其三:如果从数轴上的0点出发,分别向左右移动3个单位,会得到什么结果?2、两个数互为相反数的意义及相反数的求法:概括:只有符号不同的两个数称
22、互为相反数特点:在数轴上表示互为相反数的两个数的点分别位于原点的旁,且与原点的距离相等求法:通常在一个数的前面添上“-”号,得到的这个新数表示原数的相反数,即-a表示a的相反数 同样,在一个数前面添上“+”号,表示这个数本身概括:正数的相反数是负数 零的相反数是零(即零的相反数是其本身) 负数的相反数是正数置疑:一个数的相反数与其本身的大小关系?例:分别写出下列各数的相反数: 5、-7、+11.2 例:化简下列各数: (1) -(+10) (2) +(-0.15) (3) +(+3) (4) -(-20)三、巩固训练:四、知识小结:通过对相反数的学习,必须掌握两个数互为相反数的意义,能准确地写
23、出任意一个有理数的相反数。五、家庭作业:P28 1、2、3、4六、每日预题:1、观察-6、+6与数轴原点的位置关系,分别说出两数与原点的距离。2、什么是绝对值?如何求任何一个数的绝对值?教学反思: 本节课的教学我也觉得有不足的地方。 我设置的三次讨论,有些学生参与兴趣不浓,讨论得不够深入。还有一些学生不会读双重的数,可能讨论的时间长了一点,针对这节课的练习少了一点。这些都是我以后在教学中要加强的 第二章 有理数§2.4 绝对值备课时间:9.17 授课时间:9.24教学目的:1、要求学生理解一个数的绝对值的意义;2、会求出已知数的绝对值;3、通过绝对值和数轴的联系
24、,让学生加深对数轴作用的认识。教学分析: 重点:通过对绝对值意义的学习,能熟练地求出一个数的绝对值。 难点:绝对值的几何意义的理解及运用。教学过程:一、知识导向:在相反数意义的学习基础上,通过对数值与距离的关系,分析有关绝对值的几何意义,并反过来进一步重新认识相反数的意义。二、新课拆析:1、设疑:其一:如果我们要知道一辆汽车的行驶路程与耗油量的关系是否与汽车的行驶方向有关?其二:如果我们要说出数轴上一点与原点的距离是还与这个点在数轴的正负半轴有关系?2、绝对值的几何意义及绝对值的求法、表示法数轴的几何意义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作:|a|概括:一个正数的绝对
25、值是它本身零的绝对值是零一个负数的绝对值是它的相反数 即:不论有理表示: a(a>0) a 0 (a=0) -1 (a<0) a 0 例:求下列各数的绝对值: 、-4.75、10.5例:化简: (1) |-()| (2)- | | 三、巩固训练:P31 1、2、3四、知识小结:通过对绝对值的学习,明白绝对值的几何意义,懂得如何求出一个有理数的绝对值,并能记住任何一个数的绝对是都是非负数的性质。五、家庭作业:P31 1、2、3、4六、每日预题:1、如何比较两个正数的大小?在数轴上如何比较两个数的大小2、如何通过数轴上的位置来总结两个负数的大小比较方法?数a取何值,它的绝对值总是正数或
26、0(通常称为非负数)。教学反思:本节课的设计,使本节课一开始就让学生产生强烈的好奇心,进而积极主动地投入到学习中。一个数的绝对值实质上是数轴上该数所对应的点到原点的距离的数值,而这种几何解释反映了概念的本质,学生在对概念理解的基础上,最后再概括上升到形式定义上来,这样比较符合从感性认识上升到理性认识的规律,同时使得绝对值概念的非负性具有较扎实的基础。教学中对-a所表示的数学生理解不到位,下节课还应采用不同方法加深理解。 第二章 有理数§2.5 有理数的大小比较备课时间:9.18 授课时间:9.25教学目的:1、要求学生会利用绝对值比较两个负数的大小;2、掌握有理数大小比较
27、的一般方法。教学分析:重点:通过对两个负数比较大小过程的推理,培养学生的推理能 难点:比较两个负数的大小。教学过程:一、知识导向:本节课通过对小学阶段学过的两个正的分数或小数的大小比较及前面正数、零、负数的大小比较知识作适当复习,充分利用数轴和绝对值的知识,通过直演示,将数轴上在原点左侧表示数的“点距原点越远”,与这个“数的绝对值越大”相对应起来。让学生在直观上感受到两个负数大小比较法则的合理性。二、新课拆析:1、知识基础:其一:小学阶段对两个正数的大小比较知识;其二:正数与零、负数与零、正数与负数的大小比较;其三:数轴上的点的位置与数大小的关系;其四:求绝对值的方法及绝对值的特点。2、知识形
28、成:(引例)如何通过数轴比较-2与-6的大小?释疑:数轴上的数,右边的数比左边的数大通过对几个例子的分析能让学生认识到:在数轴上因为表示两个负数的两个点中,与原点距离较大的那个点在左边。概括:两个负数,绝对值大的反而小。例:比较下列各对数的大小:(1) 与 (2) 与(3)与 (4) 与注意:在比较两个负数的大小时,应强调学生注意比较的方法及它们之间的推理关系。三、巩固训练:四、知识小结:本节课结合前面所学的正数间的大小比较及正数、零、负数的大小比较,结合数轴上两个数的大小比较,结合负数的绝对值与数的位置关系,从而得到两个负数的大小比较方法。关在其中初步培养学生的推理能力及转化能力。五、家庭作
29、业:P34 A: 1、2、3 B: 4六、每日预题:1、如何利用正负数来表示相反意义量?请举例说明?2、如果一个人从某地出发,先走了20米,又走了30米,它最后的位置可能与原出发位置相距多少米?有几种情况,请列式表示。教学反思: 上完这节课后,感觉到本节课还有不少地方设计得不好。结合实际,我的反思如下:从学生完成自己所设计的随堂练习和巩固练习的反馈情况来分析,学生对课本的知识掌握程度不错,能运用两种方法判断有理数的大小,都能较好地完成习题。 不足之处: 1、在教学中,过多地推理概括有理数比较大小两种的方法
30、,缺少学生发表自己意见。 2、教学的预见性还不够,时间控制的不好,学生练习时间不够充分。 3、比较几个有理数大小的时候,学生容易正负数混淆。 4、学生对比较两个负分数的大小,感到比较困难。它既用到新学的两个负数比较大小的结论,又联系到两个分数比较大小的问题,学生往往只做一次比较,比较完两个绝对值的大小后,就得出结论了。 教学设计的改进: 1、对于难点的处理,可以学生讨论、讲解思路,加强学生课堂上自主学习的能力。
31、160; 2、练习方面,多设计几题学生易错的题,让学生发现问题并加以改正,使学生加深印象。 3、习题的设计要更加细心,层次分明。 以上是自己对这本节课教学之后的一些思考。只有根据课堂教学实际多进行反思,才能得到不断改进,不断提高。 第二章 有理数§2.6 有理数加法有理数的加法法则备课时间:9.20 授课时间:9.27教学目的:1、要求学生会进行有理数的加法运算;2、能正确应用加法运算律简化计算。教学分析:重点:有理数加法运算中符号的确定。难点:异号两数相加。教学过程:一、知识导向:教材引入的例题
32、开始未明确指出行走方向,旨在引起学生在有理数运算中对符号的重视,让学生参与发现和归纳的过程,得到较深刻的印象。二、新课拆析:1、问题探索:有一位同学在一条东西向的跑道上,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少米?根据我们所学过的用正负数来表示相反意义量,即规定向东为正,向西为负。(1)若两次都是向东走,则一共向东走了50米,表示:(+20)+(+30)=+50(2)若两次都是向西走,则一共向西走了50米,表示:(-20)+(-30)= -50以上两种情形都具有类似的情形,即:方向上是相同的,且结果具有类似处的。(3)若第一次向东走20米,第二次向西
33、走30米,则最后位于原来位置的西方10米,表示:(+20)+(-30)= -10(4)若第一次向西走20米,第二次向东走30米,则最后位于原来位置的东方10米,表示:(- 20)+(+30)= +10以上两种情形都具有类似的情形,即:方向上是相反的,且结果具有类似处的。(5)若第一次向西走30米,第二次向东走30米,则最后位于原来位置,表示:(- 30)+(+30)= 0(6)若第一次向西走20米,第二次没走,则最后位于原来位置的西方10米,表示:(- 20)+0= -20概括:有理数加法法则: # 同号两数相加,取相同的符号,并把绝对值相加;# 绝对值不等的异号两数相加,取绝对值较大的加数的
34、符号,并用较大的绝对值减去较小的绝对值;# 互为相反数的两个数相加得零;# 一个数与零相加,仍得这个数。例:计算:(1) (2) (3) (4) 注意:一个数由符号与绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号与绝对值。三、巩固训练:四、知识小结:本节课通过对不同情况下的结果,利用正负数来表示相反意义的量及位置的变化,从而引出有理数的加法法则,初步培养学生的分类分析能力。在运算中应特别注意异号相加的情况,学会如何确定结果的符号及绝对值。五、家庭作业:教学反思:本节课中,情境设计,对法则的概括与归纳等都进行得较为顺利,能够在课堂上发现学生问题,解决学生存在的问题,使学生由开始的迷迷
35、糊糊渐渐转变成理解掌握,再到升级、拓展,起到立竿见影的效果,这是一个老师能力的体现。 但是,不足之处也有很多,课堂气氛调动不够,声音不够洪亮,部分地方语言组织不够流畅等等,仍需要提升。2.6 有理数的加法有理数加法的运算律备课时间:9.23 授课时间:9.28教学目的:1、如何促使学生在已有基础上对运算律的再认识。2、能够运用运算律对现有的计算进行简便运算。教学分析: 重点(难点):运算律的灵活运用教学过程:一、知识导向:在上一节学习有理数加法法则的基础上,结合小学学过的有关运算律,对多个有理数相加的情况进行运算,并在其中进行灵活运用运算律,促使运用的快与准
36、。二、新课拆析:1、知识基础:其一:有理数的加法法则; (同号相加、异号相加、互为相反数相加、同0相加)其二:小学学过的有关加法的运算律。 (加法交换律、加法结合律)2、知识运用:(引例1)计算: (引例2)计算: 概括:加法交换律:两个数相加,交换加数的位置,和不变。加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变 例:计算(1) (2) 例:10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,1.5,3,-1,0,-2.5 问这10筐苹果总共重多少?三、巩固训练:P40 1、2四、知识小结:本节课主要通过能有理数的加
37、法法则及加法的交换律、加法的结合律的学习,能多个有理数的加法进行简化运算。五、家庭作业:P41 A: 3、4、5(2、3) B: 5(4)六、每日预题:1、如何计算3比-2大多少?2、如何把减法转化为加法,应注意什么?教学反思:本节课的重点是有理数加法的运算律,难点是:灵活运用加法运算律进行简化运算。课堂中学生由刚开始的引入学生学习积极性较高,达到了本节课的第一个高潮,为了突破重难点设置了两组习题练习。学生认真,完成正确率较高。总体来说课堂效果很好。学生都能掌握解题技巧。 第二章 有理数§2.7 有理数的减法备课时间:9.29 授课时间:10.8教学目的:1、要求学生会将有
38、理数减法转换成加法计算;2、让学生进一步认识到化归思想在数学学习中的应用。教学分析:重点:减法法则的运用。难点:如何通过实例引入有理数减法法则。教学过程:一、知识导向:本节课是在学习加法法则的基础上,根据减法是加法的逆运算以及有理数加法法则,通过实例引入有理数减法法则,在其过程中应对学生逐渐渗透数学上的重要的化归思想。在减法运算的学习中应着重促使学生对法则的应用。二、新课拆析:1、知识基础:其一:有理数的加法法则;其二:小学所学习的减法运算与加法运算的关系。2、设疑:珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰高多少?列式:3、知识形成:引例: 根据加法与减法互为
39、逆运算可知:而从加法中我们又可得: 由此有:同时: 所以:概括:有理数的减法法则:减去一个数,等于加上这个数的相反数。例:计算:三、巩固训练:P43 1、2、3四、知识小结:本节课通过在学习加法法则及运用加法与减法互为逆运算的方法得到有关有理数的减法法则,在运算中应注意到必须“两处同时改变符号”缺一不可。五、家庭作业:P44 A: 1、2 B: 3、4、5 C: 6六、每日预题:1、 有理数的加减混合运算可以如何统一成加法?2、 去括号后应如何对有理数进行加减?教学反思:一节课结束或一天的教学任务完成后,我们应该静下心来细细想想:这节课总体设计是否恰当,教学环节是否合理,其容是否清晰,教学手段
40、的运用是否充分,重点、难点是否突出;今天我有哪些行为是正确的,哪些做得还不够好,哪些地方需要调整、改进;学生的积极性是否调动起来了,学生学得是否愉快,我教得是否愉快,还有什么困惑等。把这些想清楚,作一总结,然后记录下来,这样就为今后的教学提供了可资借鉴的经验。经过长期积累,我们必将获得一笔宝贵的教学财富。 第二章 有理数§2.8 有理数的加减混合运算加减法统一成加法备课时间:9.30 授课时间:10.10教学目的: 1、要求学生理解加减混合运算统一为加法运算的意义。 2、能初步掌握有关有理数的加减混全运算。教学分析:重点:如何更准确地把加减混合运算统一成加法。难点:将一个加
41、减混合运算式写成省略加号的和的形式。教学过程:一、知识导向:本节是在对前面所学的有理数的加法运算法则及减法运算法则的综合运用,所以必须对有关法则有更深层次的认识,并能在运算中加以灵活运用。二、新课拆析:1、知识基础:其一:有理数的加法法则;其二:有理数的减法法则。其三:“+”、“-”在不同情形的意义(运算符号及性质符号)2、知识形成:(引例)计算:根据减法法则,按照运算顺序,有:原式= 在一个加式里,通常把各个加数的括号和它前面的加号省略不写,即有: = 这个式子仍看作和式,有两种读法,按性质符号:读作“负8、正10、负6、负4的和”按运算意义:读作“负8加上10减去6减去4”例:把写成省略加
42、号的和的形式,并把它读出来(两种读法)。例:按运算顺序直接计算: 三、巩固训练:P46 1、2四、知识小结:本节课所涉及到的新知识点比较少,但在其中就特别注意的是,如何保证学生在省略特号时,能尽量减少错误的出现,并能对省略加号的算式的准确读法。五、家庭作业:P47 A: 1、2 B: 3六、每日预题:如何结合本节课所学习的内容对有关有理数的加减混合运算进行简化运算?教学反思:第 这一课时的重点是继续帮助学生实现减法向加法的转化与加减法互化,了解运算符号和性质符号之间的关系。把任何一个含有有理数加、减混合运算的算式都看成和式,这一点对学生熟练掌握有理数运算非常重要,这是因为有理数加、减混合算式都
43、看成和式,就可灵活运用加法运算律,简化计算。通过教学实践,在本节课上不足的地方是:1.时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。2 2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。第二章 有理数§2.8 有理数的加减混全运算加法运算律在加减混全运算中的应用备课时间:10.6 授课时间:10.12教学目的: 对有理数的加减混合运算进行灵活计算。教学分析: 重点:如何使有理数的加减混全运算更准确更灵活。教学过程:一、知识导向
44、:本节课主要是利用上节课的知识点来进一步学习有关有理数的加减混合运算,以求学生对其运算的合理性及准确性的更高水平的掌握。二、新课拆析:1、复习:其一:有理数的加法法则、减法法则;其二:把有理数的加减混合运算统一成加法的方法与步骤。例:把写成省略加号的和的形式,并把它读出来(两种读法)。2、知识应用:在有理数加法运算中,通常适当应用加法运算律,可使计算简化,有理数的加减混合运算统一成加法后,一般也应注意运算的合理性。例:计算:(1) (2) 三、巩固训练:P47 1、2四、知识小结:本节通过对有理数的加法法则与减法法则的灵活运用,通过灵活运用加法运算律,对有理数混合运算进行合理性,灵活性的处理,
45、从而准确解决有关加减的混合运算。五、家庭作业:P48 A: 4 B: 5六、每日预题:1、小学中如何得到两数相乘的结果?3、 如何确定两个有理数相乘的结果(符号与绝对值)?教学反思:本节课是计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的形式,并能熟练掌握有理数的加减混合运 算及其运算顺序。还要培养学生理解事物发展变化是可以相互转化的辩证唯物主义观点。本节课本着“扎实、有效”的原则,既关注课堂教学的本质,有注重学生能力的培养,且面向全体学生来设计教学。通过教学实践
46、,在本节课上不足的地方是:1.时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。2 2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。第二章 有理数§2.9 有理数的乘法有理数的乘法法则备课时间:10.8 授课时间:10.15教学目的:1、要求学生会进行有理数的加法运算;2、使学生更多经历有关知识发生、规律发现过程。教学分析:重点:对乘法运算法则的运用,对积的确定。难点:如何在该知识中注重知识体系的延续。教学过程:一、知识导向:有
47、理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。二、新课拆析:1、知识基础:其一:小学所学过的乘法运算方法;其二:有关在加法运算中结果的确定方法与步骤。2、知识形成:(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?列 式:即:小虫位于原来出发位置的东方6米处拓展:如果规定向东为正,向西为负情形2:小虫向西爬行2分钟,那么它
48、现在位于原来位置的哪个方向?相距出发地点多少米? 列式: 即:小虫位于原来出发位置的西方6米处发现:当我们把“”中的一个因数“3”换成它的相反数“-3”时,所得的积是原来的积“6”的相反数“-6”; 同理,如果我们把“”中的一个因数“2”换成它的相反数“-2”时,所得的积是原来的积“6”的相反数“-6”;概括:把一个因数换成它的相反数,所得的积是原来的积的相反数 3、设疑: 如果我们把“”中的一个因数“2”换成它的相反数“-2”时,所得的积又会有什么变化? 当然,当其中的一个因数为0时,所得的积还是等于0。综合:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得
49、零。例:计算:(1) (2)三、巩固训练:P52 1、2、3四、知识小结:本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。五、家庭作业:P57 A: 1、2 B: 3六、每日预题:1、小学多学过哪些乘法的运算律?2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?教学反思:本节课的教学设计力争体现新课标的教学理念,对新课标下的新课堂的丰富内涵进行积极的探索与有益的尝试。着力做到新课堂是数学活动的场所,是讨论交流的学堂,是渗透德育的基地,是学生发现创造展示自我的舞台!在教学中,一定要注重学生积极性的调动。帮
50、助学生装设计恰当的学习活动。让他们发现所学东西的个人意义,营造宽松和谐的学习氛围。教师注重开发生活中蕴含的各种教育因素,使学生感到学习的必要性和趣味性,能更好调动学生投入到自主探究的学习活动中去。第二章 有理数§2.9 有理数的乘法有理数乘法的运算律备课时间:10.8 授课时间:10.16教学目的:1、如何促使学生在已有基础上对运算律的再认识。2、能够运用运算律对现有的计算进行简便运算。教学分析: 重点(难点):运算律的灵活运用。教学过程:一、知识导向:在上一节学习有理数乘法法则的基础上,结合小学学过的有关运算律,对多个有理数相乘的情况进行运算,并在其中进行灵活运用运算律,促使运用的
51、快与准。二、新课拆析:1、知识基础:其一:有理数的乘法运算法则; (两数相乘,同号得正,异号得负,同零、同1相乘)其二:小学学过的有关的乘法的运算律: (乘法交换律、乘法结合律、乘法分配律)2、知识形式:(引例1)计算:(引例2)计算:(引例3)计算:概括:乘法交换律:两个数相乘,交换因数的位置,积不变。 乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。 乘法分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加。 例 计算: 延伸:根据上例写出下列各式的结果: = ;= ;= ;= ;概括:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇个时,积为负;当负因数有偶数个时,积为正。 几个数相乘,有一个因数为零,积为零。 例 计算:(1) (2) 例 计算:(1) (2) 例 计算:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (个人)担保借贷协议书
- 建设工程施工合同审核
- 化工产品合作开发的协议书范本
- 活动邀请函范文格式
- 工程月报(格式不错)
- 天津市津南区南部片区2024年七年级上学期数学期中考试试卷【附答案】
- 云南省水富市第一中学2023-2024学年高二下学期第一次月考地理试题
- 考点11课外文言文(道理启示类寓言)-2024年中考语文一轮总复习重难点全(原卷版)
- 需求管理模块
- 工程项目管理教学大纲
- 术后镇痛麻醉效果分析报告
- 《精细化学品化学》课件
- 人教版五年级上册小数除法专项练习100题含答案
- 中学信息技术教学中如何渗透德育教育
- STEM教育课程体系构建
- 中学生阅读指导目录《水浒传》整本书阅读导读课件(共35张PPT)+单元一等奖创新教学设计
- 提高病案首页质量
- MOOC 3D工程图学-华中科技大学 中国大学慕课答案
- 2024数据安全与隐私保护审计报告
- 社会工作心理健康知识讲座
- 家庭农场创业项目计划书
评论
0/150
提交评论