




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、江西财经大学20152016学年第二学期期末考试论文题目:关于国内生产总值的时间序列分析及预测课程编码06163选课班A01课程名称时间序列分析任课教师万兆泉学号姓名学院统计学院专业会统核算考试时间2016年6月21日星期二江西财经大学20”20坨第二学期课程论文考试评分表课程名称及代码:时间序列分析06163提交时间:2016年6月21日星期二学生姓名学号成绩学院统计学院任课教师万兆泉题目关于国内生产总值即GDP的时间序列分析及预测项目评分点评分理由得分选题(010分)价值难度选题的实用价值与理论价值:12345该选题对应研究方法的难度:12345论点(15分)确定性新颖性提出的论点是否明确
2、:12345论点的现实或理论价值:12345论点的新颖程度:12345论据(30分)阅读范围调研观察资料运用分析推理所用统计方法的适当性:246810分析步骤的完整性:246810数据资料的搜集情况:246810结论(15分)合理性说服力统计结论的依据的可靠性:12345统计分析结论在现实中应用:246810写作(3040分)结构表达规范论文结构安排情况:246810论文的写作规范性:246810论文的表述情况:246810注:教师提供选题者,选题项不予评分任课教师:万兆泉摘要国内生产总值(GrossDomesticProduct,简称GDP)是指一个国家(国界范围内)所有常住单位在一定时期内
3、生产的所有最终产品和劳务的市场价值。GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况重要指标。近口,随着2012年世界各国GDP实力排名的发出,关于中国成为世界第二大经济强国的说法越来越多。本文从中国统计年鉴中选取中国1952年2014年共52年的GDP作为数据,运用时间序列分析的基本的分析方法随机时序分析,对数据进行绘图分析、模型识别、参数估计、模型估计,模型拟合、建立GDP时间序列模型、模型检验,应用选定时间序列方法预测未来GDP,并对未来中国的经济发展做出短期预测,为政府制定经济发展战略提供依据。【关键词】:国内生产总值GDP:时间序列;ARIMA模型目录一、背景1二、
4、基础数据2三、数据分析21、平稳性检验及平稳化处理22 .纯随机性检验53 .时间序列模型的建立63.1 模型定阶63.2 参数估计93.3 模型检验104 .国民生产总值的预测及分析11四、结论12附录12一、背景卜.世纪80年代初,中国开始研究联合国国民经济核算体系的国内生产总值(GDP)指标。中国于1985年开始建立GDP核算制度。1993年,中国正式取消国民收入核算,GDP成为国民经济核算的核心指标。23年国家统计局宣布中国将改进GDP核算与数据发布制度,取消容易引起误解的预计数,建立定期修正和调整GDP数据的机制,在发布GDP数据的同时发布相关的重要数据,必要时还将公布核算方法。这是
5、中国提高GDP数据的准确性和透明度,向国际通行办法迈进的重要一步。2014年国家统计局将积极稳妥的推进国家统一核算地区生产总值,深化固定资产投资统计,加快改进能耗统计进一步完善社会消费品零售统计,同时将精心组织实施第三次全国经济普查认真做好普查登记。尽快制定经济核算图,指定全国统一的核算办法,为2015年正式实施全国统一的核算GDP来打下一个基础。此举将疗效消除近10年来各省GDP总和与国家统计局核算的全国GDP存在较大出入的情况。国民生产总值(GNP)是一个国民概念,是指某国国民所拥有的全部生产要素在一定时期内所生产的最终产品的市场价值。举例说明:一个在口本工作的美国公民所创造的财富计入美国
6、的GNP,但不计入美国的GDP,而是计入口本的GDP。在1991年之前,美国均是采用GNP作为经济总产出的基本测量指标,后来因为大多数国家都采用GDP,加之国外净收入数据不足,GDP相对于GNP来说是衡最国内就业港力的更好指标,易于测量,所以美国才改用GDPo在季度GDP核算时,将所有可以在核算时获得的、适用的经济统计调查数据都用于GDP核算。资料来源主要包括两部分:一是国家统计调查资料,指由国家统计系统实施的统计调查获得的各种统计资料,如农林牧渔业、工业、建筑业、批发和零售业、住宿和餐饮业、房地产业等统计调查资料、服务业抽样调查资料、人I与劳动工资统计资料、价格统计资料等。二是行政管理部门的
7、行政记录资料,主要包括:财政部、中国人民银行、国家税务总局、保监会、证监会等行政管理部门的相关数据,例如中国人民银行的金融机构本外币信贷收支情况、国家税务总局分行业的税收资料等。GDP核算有三种方法,即生产法、收入法、支出法,三种方法从不同的角度反映国民经济生产活动成果,理论上三种方法的核算结果相同。生产法是从生产的角度衡量常住单位在核算期内新创造价值的一种方法,即从国民经济各个部门在核算期内生产的总产品价值中,扣除生产过程中投入的中间产品价值,得到增加值。核算公式为:增加值=总产出-中间投入。收入法是从生产过程创造收入的角度,根据生产要素在生产过程中应得的收入份额反映最终成果的一种核算方法。
8、按照这种核算方法,增加值由劳动者报酬、生产税净额、固定资产折旧和营业盈余四部分相加得到。支出法是从最终使用的角度衡量核算期内产品和服务的最终去向,包括最终消费支出、资本形成总额和货物与服务净出口三个部分。国家统计局发布的季度GDP是以生产法为基础核算的结果。而本文的数据摘自中经网统计数据库,使用了中国1952-2014年的GDP数值。二、基础数据卜.面以中国1952-2014年国内生产总值数据(见表1-1)为例,选取最为合理的预测方法对未来5年GDP的做出预测。0表1-1中国19522014年国内生产总值(单位:亿元)年份国内生产总值年份国内生产总值年份国内生产总侑1952G乙元)679197
9、3(化元)2720.91994(亿元)48459.6419528241919742789.9199561129a1954859.3819752997.319971572.32195591019763.7159779429.43195G102819773201.9199884883.691»57106819783650741湖130719794067.67200099776.251959143919804551.532001110270.36I9601457471381438.152002r121002.D4196112201382533.0520031365
10、64.6419621U9.313835975.592004160714.4219631233.313847226.262005185895.761964145413859039.952006217656.591%51716.1198610308.762007268019.351966188198712102.132008匚316751.7519671773.9198815101.07200945629.231723.1138917090.332010L408902.951937.9199018774.322011484123.51970L侬1391KM2P5341230419712426.41
11、992270e8.322013588018.7619722518.1139335524.352014匚6361s8.73三、数据分析1、平稳性检验及平稳化处理平稳性是一些时间序列具有的统计特征,对数据进行平稳性检验是分析时间序列的关键步骤。平稳时间序列有两种定义,根据限制条件的严格程度,分为严平稳时间序列和宽平稳时间序列。对序列的平稳性有两种检验方法,一种是根据时序图和自相关图显示的特征做出判断的图检验方法;一种是构造检验统计量进行假设检验的方法。(1)时序图检验平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动范围有界的特点。如果观察序列的时序图,显示出该序列有明显的趋势
12、性或周期性,那它不是平稳序列。(2)自相关图检验自相关图是一个平面二位坐标悬垂线图,一个坐标轴表示延时期数,另一个坐标轴表示自相关系数,通常以拈垂线表示自相关系数的大小。在平稳序列中,随着延迟期数k的增加,A自相关系数k的增加,自相关系数,夕人会很快地衰减向零。反之,非平稳序列的自相关系A数/a七衰减向零的速度通常比较慢,这就是我们利用自相关图进行平稳性判断的标准。(3)单位根检验法由于图检验带有很强的主观色彩,为了客观起见,人们开始研究各种序列平稳性的统计检验方法,其中应用最广的是单位根检验。ADF检验:对于任一力R(p)过程:-=卬*+%,+弓为了方便检验,将其间记为:z='t+睥
13、+4T演"i其中:0=0+02+一+久一13=一。加一力.2ep,j=l,2,,p-1则=0,序列xj非平稳:<0,序列七平稳。首先绘制原始GDP的时间序列图,从图2口可以看出GDP在1978年之前一直很平稳的在2000-3000亿元波动,但1978年后具有很明显的上升趋势,到2000年以后更是迅猛增长,可以看出原始序列显然是非平稳的。这很符合中国的国情,改革开放以后中国的经济快速发展,故GDP也指数式快速增长。回为了能够对序列进行分析,要使其平稳化。故将选择两种方法:取对数法和差分法,对序列进行平植化处理,从而进一步分析预测。由差分的选择我们可以知道序列蕴含着曲线趋势,通常低
14、阶(二阶或三阶)差分就可以提取出曲线趋势的影响,我们对原始数据进行一、二阶差分,并验证其平稳性。我们先进行一阶差分,即相距一期的两个序列值之间的减法运算。Uxt=xt-xt-i差分后的序列VxJ的时序图如图11所示。图2-2一阶差分时序图AugmentedDickey-FullerUnitRootTestsTypeLasRhoPr<RhoTauPr<TauFPr>FZeroMean0-0.82590.5008-0.300.573610.33900.76070.140.7222SingleMean0-2.58870.6999-0.830.80440.720.88631-1.16
15、250.8670-0.410.90030.630.9111Trend0-9.69260.4244-2.200.47832.880.81141-7.51680.5983-1.810.68952.270.7268图2-3一阶差分单位根检验检验结果表明Tau统计量的P值显著大于0.05,所以我们可以认定差分后的序列是非平稳的。故还要再次进行差分计算。图2-4二阶差分时序图AugmentedDickey-FullerUnitRootTestsTypeLagsRhoPr<RtoTauPr<TauFPr>FZeroMean0-63.6473<.00018.38<.00011-
16、188.7530.0001-3.48<0001SingleMean0-70.70170.0006-5.D50.000140.970.00101-207.3200.0001-3.840.000148.440.0010Trend0-71.98030.0001-9.13<.000141.720.00101-235.3180.0001-10.32<.000153.240.0010图2-5:阶差分单位根检验由检脸结果我们可以看到Tau统计量的P值显著小于0.0001,所以我们可以确定二阶差分后序列平稳©所以,我们认为4R/V伏模型的差分阶数d等于2。2 .纯随机性检验在将数据
17、平稳化之后,还要判断序列是否有分析价值,必须对序列进行纯随机性检验,即白噪声检验。为了判断序列是否有分析价值,必须对序列进行纯随机性检验,即白噪声检验,因此在建模之前需要进行纯随机性检脸。若是到平稳的白噪声序列,则该序列没有分析价值:若是平稳非白噪声序列,可进行模型拟合。原假设:延迟期数小于或等于m期的序列值之间相互独立。备择假设:延迟期数小于或等于m期的序列值之间有关联性。该假设条件用数学语言描述为:。:8=2=P.=。,之11:至少存在某个QH0,V,”>I,A-<检验统计量:LB=Ap;小+2)耳fLB>£("?),拒绝原假设,认为该咛列为非纯随机序
18、列,可以建模。£8</;(机),接受原假设,认为该序列为纯随机序列,终止建模。AutocorrelationCheckforWhiteNoiseAutocorrelationsPr>ChiSqDFChi-SquareToLas0.039-D.O33-0.018-0.0280889OuOQ1nAuJ4OuOu77350.u5cv36nVAMO1J44fl.Q0cdnOu74QvnV44.n.nuAnu4293OuOu.7f1图2-6二阶差分后白噪声检验SAS里面的白噪声检验假设是所给的时间序列属于白噪声。所以当P值(PrChiSq)小于置信水平(avO.OOOl)时,拒绝检
19、验假设;而当P值大于置信水平时,不拒绝检验假设。在二阶差分后白噪声检验(图2-6)中显示,LB统计量的P值小于0.0001,所以可以断定二阶差分序列属于非白噪声序列。结合前面的平稳性检验结果,说明该序列是平稳非白噪声序列,可进行模型拟合。3 .时间序列模型的建立3.1 模型定阶移动平均模型:为=+4一夕声1一夕2£-234p时力(夕)模型qwoE(G=0,乙-(£,)=b;,£*(.65)=0,5自回归移动平均模型:工,=耙+h+蟒”p+与一%£“一破产o,q工oE(£)=0,5(£,)=cr;,E(£,£)=0,
20、sHfE(x£)=0,Vs<f当夕=0时,夕)模型就退化成了4?(p)模型;当p=0时,力RA/力(p,g)模型就退化成了A/Z(q)模型。时间序列模型选择标准:平稳的序列的自相关图和偏相关图不是拖尾就是截尾。战尾就是在某阶之后,系数都为0:拖尾就是有一个衰减的趋势,但是不都为0。模型自相关系数偏白相关系数力&(p)拖尾p阶截尾M4(夕)q阶截尾拖尾ARMA(p、q)拖尾拖尾首先根据二阶差分序列自相关图(图2-7)及二阶差分序列偏自相关图(图2.8)AutocorrelatiorsagCovarianceCorrelation-1987854321()123456789
21、1StdError0481228951.0000001-8453648-.175670.1280372-21403635-.44477*0.1319293194667880.404520.154568435671190.07413*.0.1710455-7706029-.16013*0.171571618689230.03884*.0.174003728487750.058200.1741468-4381624-.09105:*0.1744759-3332853-.06925*0.1752521015716970.032660.175700113942790.008190.17580012-1
22、583420-.032300.175806137174560.014310.17530714-407003-.008480.17592815-646891-.013440.1759341627727200.057620.1759511?18468080.03838*.0817626018-843380-.017530.17633?194671120.009710.17642620-831677-.017280.17643521-2201458-.04575:*0.176462223261550.006780.176657239049510.018S10.17666124-1115408-.02
23、3180.176634markstwostandarderrors图2-7二阶差分序列自相关图LacPartiaIAutocorrelationsCorrelation-198765432101234567831111111111122222123456789012345678901234-0.17567-0.490770.27433-0.018430.20475-0.078020.06657-0.17299-0.06565-0.135600.0300C-0.003860.10333-0.028530.03446-0.001540.078850.010810.04431-0.09338-0.0
24、7284-0.104970.012490.01153中冰出水生冰*出*出.冰冰*.*中*:*:*:.*HClg不图2-8二阶差分序列偏自相关图除了延迟1-3阶的自相关系数在2倍标准差范阳之外,其他阶数的自相关系数都在2倍标准差范围内波动。根据自相关系数的这个特点可以判断该序列具有短期的相关性,进一步确定序列平稳。再进一步考察自相关系数衰减到零的过程,可以看到有明显的正弦波动轨迹,这说明自相关系数衰减到零不是一个突然的过程,而是个渐变的过程,这是自相关系数拖尾的典型特征,我们可以把拖尾特征形象地描述为“坐着滑梯落水”。最后考察偏自相关系数衰减到零的过程,除了13阶偏自相关系数在2倍标准差范围之外
25、,其他阶数打的偏自相关系数都在2倍标准差范围之内,这是一个偏自相关系数3阶截尾的典型特征,我们可以把这种截尾形象地描述为“3阶之后高台跳水,溅起水花点点”。二阶差分自相关图(图2-8)显示出该序列有自相关系数3阶拖尾的性质,而偏相关系数显示出3阶截尾的性质,所以可以考虑用MA(3)模型拟和2阶差分后的序列。为了检验所选择模型是否合适,我们可以用SAS系统提供的MINIC命令做最优模型识别。LaARARARARARARS012345gMA0MA1MA2MA317.6882417.7459117.5780517.2732617.723117.7752?17.4800517.3406317.5069
26、217.4023417.4665317.3951517.4416817.4617817.430517.4224717.4532917.5197717,503617.4701217.4113717.4366317.4746717.53607MinimumInformationCriterionMA417.3404317.4000417.4385117.3701817.367317.42589MA517.3970117.4468817.4496317.4226517.4157617.34728TheARIMAProcedureErrorseriesmodel:AR(5)MinimumTableVa
27、lue:BIC(0,3)=17.27326图2-9BIC定阶由图2-9显示,在自相关延迟阶数小于等于5,移动平均延迟阶数小于等于5的所有MA(q)模型中MA(3)最优,故我们选择ARIMA(0,2,3)模型。3.2 参数估计确定模型阶数后,应对拟合的模型进行参数估计。参数最优估计应该是在前面分析的基础上,利用序列的观察值确定该模型的口径,即估计模型中未知参数的值,将所有参数联合求解。SAS支持三种参数估计方法,如果不特别指出制定参数估计的方法,系统默认的估计方法是条件最小二乘估计方法。对ARIMA(0,23)模型进行参数估计,结果为:ConditionalLeastSquaresEstimat
28、ionvaAprXIotr123MUMA1掰MA1751.622637U.914301.050.297500.205330.115391.780.090510.455890.115733.940.00022-0.709310.13653-5.20<.00013StandardParameterEstimateError图2.10参数估计由结果中可以看到MU不显著,而其它参数均显著,所以要去掉常数项再次估计未知参数结果如图341oConditionalLeastSquaresEstimationParameterEstirnateStandsrdErrortValueApproxPr>
29、;ItlLagMAIJ0.200440.110081.820.0?881MA1.20.408600.111713.660.00062MAI,3-0.727270.12806-5.68<.00013图2-11去掠常数后参数估计由结果中可以看到MALI不显著,而其它参数均显著,所以要去掉常数项再次估计未知参数结果如图312。显然2个未知参数都显著。ConditionaILeastSquaresEstimationParameterEstimateStandardErrortVa1ueApproxPr>ItlLagMA1JMA1?20.40758-0.526970.127690.1333
30、83.19-3.810.00230.000323图212去抻第1个因子后的参数估计YarianceEstimate30700741StdErrorEstimate5540.825AIC1226.705SBC1230.926NumberofResiduals61*AICandSBCdonotincIudelogdeterminant.图2-13得到拟企结果为:MovingAverageFactorsFactor1:1-0.4075SB*式2)+0.52697Bw(3)图2-14拟合结果可.表示为:V2xt=(10.40758B2+0.5269763)'AutocorrelationChe
31、ckofResiduaIsToLagChi-SquareDFPr>ChiSq63.0240.5542-0.042124.25100.3352-0.062185.94160.9898-0.041246.3?220.3385-0.005-0.1390.0790.132-0.0110.034-0.045-0.1030.016-0.007-0.006-0.01?0.0060.1000.0910.031-0.042-0.048-0.0020.018-0.005Autocorrelations"图2-15拟合模型检验从上图245可以看出,延迟6阶、12阶、18阶、24阶的LB统计量P值均显
32、著大于a(。=0.05),可知残差通过了白噪声检验,即认为残差序列为白噪声序列,该拟合模型MA(3)显著成立。4 .国民生产总值的预测及分析我们利用此模型对国内生产总值之后5年的GDP进行预测结果如卜.:TheARINAProcedureForecastsforvariablexObsForecastStdError951ConfidenceLimits64685822.730665734443.215766778159.346467821875.477068865591.60775540.825012389.66118969.24527978.79038721.870674962.91327
33、10159.9258740980.3090767038.0562789698.1375696682.5480758726.5056815338.3837876712.8978941485.0779图2-16预测结果图2-17序列在两种方差假定下的置信区间效果图由图2-17可以从图中看出,模型拟合效果很好,国内生产总值在未来5年内还是会稳定地上涨。、结论本文根据19522014年中国的国内生产总值(GDP)的统计资料,针对GDP的非平稳特征,通过差分变成平稳序列,建立GDP时间序列的ARIMA模型,并在此基础上用于国内生产总值GDP的预测分析。计算结果表明,该模型能较好地解决国内生产总值GDP的
34、估计和预测问题,预测精度较为精确。附录附录1参考文献:王燕.应用时间序列分析M.北京:中国人民大学出版社,第三版.2刘薇.时间序列分析在吉林省GDP预测中的应用D.东北师范大学硕士学位论文,2009.周文娟.我国GDP的统计分析及预测任B/OL.徐雅静.ARIMA模型在河南省GDP预测中的应用及SAS实现J.中国科技信息,2006,10:216-219.张丽.天津市人均GDP时间序列模型及预测J.北方经济,2007,(6):44-46.6中经网统计数据库附录2原始数据:指标国内生产总值地区全国频度年单位亿元19526791953824.191954859.3819559101956102819
35、571068195813071959143919601457.471961122019621149.319631233.31964145419651716.11966186819671773.919681723.119691937.919702252.719712426.419722518.119732720.919742789.919752997.319762943.719773201.919783650.1719794067.67198045515819814898.1519825333.0519835975.5919847226.2619859039.95198610308.761987
36、1210207198917090.33199018774.32199121895.53199227068.32199335524.35199448459.64199561129.8199671572.32199779429.48199884883.69199990187.74200099776.252001110270.362002121002.042003136564.642004160714.422005185895.762006217656.592007268019.352008316751.752009345629.232010408902.952011484
37、123.52012534123.042013588018.762014636138.73附录3sas程序:一阶差分dataexample3_l;inputx;difx=dif(x);time=_n_;cards;679824.198S9.3891010281068130714391457.4712201149.31233.314541716.118681773.91723.11937.9oocoi2426.42518.12720.92997.32943.73201.93650.174067.674551.584893.155333.055975.597226.269039.9510308.7612102.1815101.0717090.3318774.3221895.5327068.3235524.3548459.6461129.871572.3279429.4884883.6990187.7499776.25110270.36121002.04136564.64160714.42185395.76217656.S9268019.35316751.75345629.23408902.95
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025煤炭购销合同2
- 井队员工合同样本
- 铁路护栏搬运方案范本
- 修补水沟合同样本
- 农村改造项目合同样本
- 公路牌安装合同样本
- 万科咨询合同样本
- 出售自用冷库合同样本
- 冲压配件订购合同样本
- 代理办证机构合同样本
- 2024年新人教版六年级数学上册《教材练习2练习二 附答案》教学课件
- 【核心素养目标】六年级科学下册(苏教版)4.13 洁净的水域(教案)
- 设备吊装作业施工方案
- 小学语文“的、地、得”专项练习(附答案)
- 2024至2030年中国去中心化标识符(DID)市场现状研究分析与发展前景预测报告
- 《建筑施工测量标准》JGJT408-2017
- 2024-2030年中国社区医院行业市场发展分析及前景趋势与投资研究报告
- 2024年四川省成都市郫都区五年级数学第二学期期末学业质量监测模拟试题含解析
- 黑龙江省齐齐哈尔市2024年中考数学试卷【附真题答案】
- 脱硫技术方案钠碱法脱硫
- 2024年广东省中考生物试卷附答案
评论
0/150
提交评论