版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 用函数观点看用函数观点看 一元二次方程一元二次方程w 我们知道:代数式b2-4ac对于方程的根起着关键的作用.复习.2422, 1aacbbx有两个不相等的实数根方程时当00,0422acbxaxacb:00,0422有两个相等的实数根方程时当acbxaxacb.22, 1abx没有实数根方程时当00,0422acbxaxacb.4.004222acbacbxaxacb即来表示用根的判别式的叫做方程我们把代数式一元二次方程根的情况与b-4ac的关系问题问题1:1:如图如图, ,以以 40 40 m /sm /s的速度将小球沿与地面成的速度将小球沿与地面成 3030度度角的方向击出时角的方向击
2、出时, ,球的飞行路线是一条抛物线球的飞行路线是一条抛物线, ,如果不考如果不考虑空气阻力虑空气阻力, ,球的飞行高度球的飞行高度 h (h (单位单位:m):m)与飞行时间与飞行时间 t t ( (单位单位:s):s)之间具有关系之间具有关系: : h= 20 t 5 th= 20 t 5 t2 2 考虑下列问题考虑下列问题: :(1)(1)球的飞行高度能否达到球的飞行高度能否达到 15 m? 15 m? 若能若能, ,需要多少时间需要多少时间? ?(2)(2)球的飞行高度能否达到球的飞行高度能否达到 20 m? 20 m? 若能若能, ,需要多少时间需要多少时间? ?(3)(3)球的飞行高
3、度能否达到球的飞行高度能否达到 20.5 m? 20.5 m? 若能若能, ,需要多少时需要多少时间间? ?(4)(4)球从飞出到落地要用多少时间球从飞出到落地要用多少时间? ?解解:(1 1)解方程解方程 15=20t-5t t-4t+3=0 t =1, t =3.当球飞行当球飞行1s和和2s时,时,它的高度为它的高度为15m。 ?12ht (2)解方程解方程 20=20t-5t t-4t+4=0 t = t =2. 当球飞行当球飞行2s时,时,它的高度为它的高度为20m。122(4)解方程)解方程 0=20t-5t t-4t=0 t =0, t =4.当球飞行当球飞行0s和和4s时,时,它
4、的高度为它的高度为0m,即,即0s飞飞出,出,4s时落回地面。时落回地面。(3)解方程)解方程 20.5=20t-5t t-4t+4.1=0 (-4)-4*4.10, 方程无实数根方程无实数根1(2、20)例如例如, ,已知二次函数已知二次函数y=-Xy=-X2 2+4x+4x的值为的值为3,3,求自变求自变量量x x的值的值. .就是求方程就是求方程3=-X3=-X2 2+4x+4x的解的解, ,例如例如, ,解方程解方程X X2 2-4x+3=0-4x+3=0就是已知二次函数就是已知二次函数y=Xy=X2 2-4x+3-4x+3的值为的值为0,0,求自变量求自变量x x的值的值. .结论:
5、一元二次方程结论:一元二次方程ax2+bx+c=0的两个根为的两个根为x1,x2 ,则抛物线则抛物线 y=ax2+bx+c与与x轴的交点坐标轴的交点坐标是是(x1,0),(x2,0)观察观察:下列二次函数的图下列二次函数的图象与象与x轴有公共点吗轴有公共点吗?如如果有果有,公共点横坐标是多公共点横坐标是多少少?当当x取公共点的横坐取公共点的横坐标时标时,函数的值是多少函数的值是多少?由此由此,你得出相应的一你得出相应的一元二次方程的解吗元二次方程的解吗?(1)y=x2+x-2(2)y=x2-6x+9(3)y=x2-x+1w二次函数二次函数y=axy=ax2 2+bx+c+bx+c的图象和的图象
6、和x x轴交点的轴交点的横坐横坐标标与一元二次方程与一元二次方程axax2 2+bx+c=0+bx+c=0的的根根有什么关系有什么关系? ?y=x-6x+9Y=x+x-2Y=x-x+1xy ?(1)设y=0得x2+x-2=0 x1=1,x2=-2抛物线y=x2+x-2与x轴有两个公共点,公共点的横坐标分别是1和-2,当x取公共的的横坐标的值时,函数的值为0.(2)设y=0得x2-6x+9=0 x1=x2=3抛物线y=x2-6x+9与x轴有一个公共点,公共点的横坐标是3当x取公共点的横坐标的值时,函数的值为0.(3)设y=0得x2-x+1=0b2-4ac=(-1)2-4*1*1=-30方程x2-
7、x+1=0没有实数根抛物线y=x2-x+1与x轴没有公共点Y=x+x-2Y=x-x+1y=x-6x+9xy(-2、0)(1、0)二次函数二次函数y=axy=ax2 2+bx+c+bx+c的图的图象和象和x x轴交点轴交点一元二次方程一元二次方程axax2 2+bx+c=0+bx+c=0的根的根一元二次方程一元二次方程axax2 2+bx+c=0+bx+c=0根的判根的判别式别式=b=b2 2-4ac-4ac有两个交点有两个交点有两个不相有两个不相等的实数根等的实数根b b2 2-4ac 0-4ac 0只有一个交点只有一个交点有两个相等有两个相等的实数根的实数根b b2 2-4ac = 0-4a
8、c = 0没有交点没有交点没有实数根没有实数根b b2 2-4ac 0-4ac 0b2 4ac= 0b2 4ac0,c0,c0时时,图象与图象与x轴交点情况是轴交点情况是( )A 无交点无交点 B 只有一个交点只有一个交点 C 有两个交点有两个交点 D不能确定不能确定CX1=0,x2=5知识巩固知识巩固:1.抛物线抛物线y=2x2-3x-5 与与y轴交于点轴交于点,与与x轴交于点轴交于点.2.一元二次方程一元二次方程 3 x2+x-10=0的两个根是的两个根是x1= -2 ,x2=5/3, 那么二次函数那么二次函数y= 3 x2+x-10与与x轴的交点坐标是轴的交点坐标是.归纳:一元二次方程归
9、纳:一元二次方程ax2+bx+c=0的两个根为的两个根为x1,x2 ,则抛物线则抛物线 y=ax2+bx+c与与x轴的交点坐标轴的交点坐标是是(x1,0),(x2,0)(0,-5)(5/2,0) (-1,0)(-2,0) (5/3,0)3.如图如图,抛物线抛物线y=ax2+bx+c的对称轴是直线的对称轴是直线 x=-1,由由图象知图象知,关于关于x的方程的方程ax2+bx+c=0的两个根分别是的两个根分别是x1=1.3 ,x2=-3.3xAoyX=-13-11.3.思考:已知抛物线思考:已知抛物线y=x2 + mx +m 2 求证求证: 无论无论 m取何值取何值,抛物线总与抛物线总与x轴有两个交点轴有两个交点.冲击中考冲击中考:1.若抛物线若抛物线 y=x2 + bx+ c 的顶点在第一象限的顶点在第一象限,则则方程方程 x2 + bx+ c =0 的根的情况是的根的情况是.2.直线直线 y=2x+1 与抛物线与抛物线 y= x2 + 4x +3 有个交点有个交点.无解无解0 ?5、已知二次函数、已知二次函数y=2x2-mx-m2(1)求证:对于任意实数)求证:对于任意实数m,该二次函数的图像与,该二次函数的图像与x轴轴总有公共点总有公共点;(2)该二次函数的图像与)该二次函数的图像与x轴有两个公共点轴有两个公共点A、B,且,且A点坐标为(点坐标为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 镀锌工试复习试题(一)
- 高校教师法律法规复习试题及答案
- 华电考试初级理论练习试题附答案
- 坝工课程设计土石坝
- 单词速记 课程设计
- 儿童绘画树木课程设计
- 型钢课程设计总结
- 伦敦传媒课程设计
- 夜色微课程设计
- 动画原理课程设计
- 人教版八年级上册数学期末复习计划
- 数据分析中的特征选择与特征提取
- 2024年度农村电子商务ppt演示课件
- 《民法典》合同编通则及司法解释培训课件
- 《叙利亚战局分析》课件
- 人工智能深度学习基础知识与应用
- 质量部门发展规划
- 2022管理学试题库(马工程)
- 高边坡施工安全培训
- 铁道概论(第八版)佟立本主编
- 铜229-1 12号 pep广州版小学英语五年级上册 module5-6 unit7-10 修改 4000字 版面设计
评论
0/150
提交评论