数学的均衡(对称)_第1页
数学的均衡(对称)_第2页
数学的均衡(对称)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学的均衡对称做一个实验:把你的两只手正放在桌面上。想象一条垂直平分两大拇指之间连线的直线,它就是对称轴。如果把一面镜子放在这条直线上并倾向左手一点,那么它将在与你右手相应的位置形成一个映像。这就是轴对称。不论是天然的事物还是人工的产品,一个最突出、最直观的几何性质就是对称性。在现实世界中,最明显的是人体的左右对称性。对称的概念出现在自然、艺术、科学、建筑乃至诗歌中。事实上,它能够在我们生活的几乎所有方面找到。有一些东西中它似乎是固有的,以致于我们常常视其为自然。正如大数学家外尔所说“对称性和美紧密相连”。对称性在数学给出严密的定义之前,多少还是模糊的,由于对称性与美联系在一起,往往与匀称也就

2、是比例均匀、一个整体各部分配置平衡以及和谐、优美、适中及不走极端有些相似。但是物体的匀称与空间的几何图形的对称性有一定距离。一只蝴蝶的体态、一片叶子的形状、人类的身体、一个完整的圆以及蜂窝结构等等,一看之下给人的感觉是完全均衡的,这多半要归因于它们的对称。有时一种形式上的差异,也会成为特殊的吸引人的品质。当我们看到一种图案或雕塑时,无须过分留意即能判定喜欢它或不喜欢它,而它的对称或差缺,大概是影响我们感觉的重要因素。数学中也充满对称。从数学观点看,如果能找到一条直线,它分一个对象为两个全等的部分,或者沿这条直线折叠,能使其中的一部分与另一部分完全重合,那么这一对象就被认为是关于这条直线为轴对称

3、。在几何中,具有这种性质的图形很多,例如,线段、角、等腰三角形、矩形、菱形、正方形、圆等等。在代数中,一个函数的反函数能够由改变X和Y坐标的位置来实现。用相应的方程可以绘制出一个函数和它反函数的图象,它们是关于直线y=x对称的。类似地,如果能找到一个点,使一个对象绕着这个点转动180°,还能和原来重合,那么这一对象就被认为是关于这个点中心对称。在几何中,具有这种性质的图形也很多。如线段、平行四边形、圆等等。从数学上看真正的对称性是与某种变换或某种操作下的不变性联系在一起的。例如,一个图形具有左右(轴)对称性,那么它在反射的操作下仍然重合到它本身。一个圆、一个球,在转动之下,我们仍然得

4、到同一的圆和球,这就是转动(中心)对称性。这两种对称性,我们看起来还是比较直观的。还有一种对称性,看起来就不那么直观了,那就是平移对称性。三角形的所有性质几乎都是与它在空间里的位置无关的,也就是说,无论我们把三角形移到哪里,它的性质都保持。这么看,平移不变性是一种抽象的对称性,但它也有一种具体的背景,即三维的晶体和二维的壁纸,显然具有直观的对称性。对于具有对称性的几何图形,数学研究的问题是什么呢?主要有以下三个:1两种对称图形,它们的对称性本质上是相同还是不同的?2对于各种对称性加以分类。3证明这种分类是完备的,也就是具有某种对称性的图形必定属于其中之一种。亲爱的读者,你愿意研究这些问题吗?【

5、附录】一、【算经十书简介】唐代初年,数学家李淳风奉诏校注了十部算书,作为国子监明算科的教材。这十部算书是:周髀算经、九章算术、海岛算经、孙子算经、五曹算经、夏侯阳算经、张邱建算经、缀术、五经算术和缉古算经,统称算经十书,其中缀术在公元1084年即已失传。1213年发现一本署名东汉徐岳著的数术记遗,就将它代替缀术,仍然凑成十部。周髀算经、九章算术、张邱建算经、海岛算经、孙子算经的介绍可在本书中查找,下面简单介绍其它几部算经。缀术是祖冲之的主要著作,也是算经十书中内容最艰深的数学著作。据隋书·律历志记载:“(祖冲之)所著之书,名为缀术,学官莫能究其深奥,是故废而不理。”祖冲之虽然一生担任

6、过各种大小官职,但是他一直把科学研究作为自己的事业。祖冲之的儿子继承父业,进一步钻研,使缀术得以补充完善,特别是创造性地发现了球体积公式,完成了刘徽和祖冲之的未竟事业。祖冲之父子的研究成果大概都保存在他们父子合著的缀术之中,由于该书失传,现在只能从唐代学者李淳风为九章算术的“开立圆术”所作的注中了解其大概情形。缀术的失传,是中国数学史上的一个重大损失。缉古算经的作者是唐初历算家王孝通。据旧唐书记载,王孝通在上缉古算术表中说:“臣长自闾阎,少小学算。镌磨愚钝,迄将皓首,钻寻秘奥,曲尽无遗。代乏知音,竟成寡和。伏蒙圣朝收拾,用臣为太史丞。,遂于平地之余,续狭斜之法,凡二十术。名曰缉古。请访能算之人

7、考论得失,如有排其一字,臣欲谢以千金。”全书除第1题是关于历法的问题外,其余各题都是关于土木工程、仓库容积以及勾股定理应用的问题。且这些问题都是前人没有研究或者前人虽已研究,但未能解决的问题,所以表现了很高的独创性。缉古算经共列20个问题,大部分都归结为一个三次方程求解。创造了布列三次方程解应用问题,并运用开立方法解三次方程的方法。这是一个辉煌成就,不仅是现存中国典籍中关于解三次方程的最早记述,在世界数学史上也是关于三次方程数值解法及其应用的最古老的珍贵文献。缉古算经原文不易看懂,且题中数据较多,计算较繁,是现存算经十书中最难学的一本。夏侯阳算经的著作年代应在张邱建算经之前,但不幸在宋初已经失

8、传。现传本夏侯阳算经很可能是唐代宗时期(763年779年)写成的韩延算术。其中有很多乘除速算的例题,并记载了许多唐代的制度、法令和官吏名称等,有一定的历史价值,但数学上的学术价值不大。数术记遗一卷,卷首题“汉徐岳撰,北周汉中郡守前司马臣甄鸾注”。但是书中引用佛经词汇等不符合东汉末年的史实,因此后人疑为甄鸾本人依托伪造又自己注释的作品。数术记遗列有十四种不同的算法。第一种“积算”即一般用的算法,最后一种“计数”指心算。其它12种包括太乙算、两仪算、三方算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算和珠算。这些算法中,或用彩色珠子的位置表示各位数字,或用少数特制的筹,由筹的方向表示各位数字。甄鸾意在化简筹算方法,但效果并不理想。关于“珠算”倒是值得一提的,这里的“珠算”很可能是元明时代盛行的珠算的先驱。五曹算经是一部为地方行政官员编写的应用算术书。全书五卷,标题分别为田曹、兵曹、集曹、仓曹和金曹。此算经是甄鸾所撰注。五经算术二卷,是将尚书、诗经、周易、周官、礼记和论语等经籍古注中有关数学计算的叙述加以解释。也是甄鸾所撰注。一般认为,五曹算经和五经算术这两本书对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论