版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2121yykxx1、直线的倾斜角、直线的倾斜角范围范围?18002、如何求直线的斜率?、如何求直线的斜率?tank(90 )12()xx3 3、在直角坐标系内如何确定一条直线?、在直角坐标系内如何确定一条直线?答答(1 1)已知已知两点两点可以确定一条直线。可以确定一条直线。 (2 2)已知直线上的已知直线上的一点一点和直线的和直线的倾斜角(斜率)倾斜角(斜率) 可以确定一条直线。可以确定一条直线。1 1、过点、过点 ,斜率为,斜率为 的直线的直线 上的上的每一点每一点的坐标都满足方程(的坐标都满足方程(1 1)。)。00,0()P x ykl00()yyk xx(1 1) 直线方程的直线方
2、程的点斜式点斜式(1)直线上)直线上任意一点任意一点的的坐标坐标是方程的是方程的解解(满足方程)(满足方程)(2)方程的)方程的任意任意一个一个解解是直线上点的坐标是直线上点的坐标注:点斜式适用范围:斜率注:点斜式适用范围:斜率k存在存在直线和方程的关系直线和方程的关系1yy 1、当直线、当直线 的倾斜角为零度的倾斜角为零度 时(图时(图 2)tan0 =0 , 即即 k=0. 这时这时直线直线 的方程就是的方程就是l特属特属情况情况 2、当直线、当直线 的倾斜角为的倾斜角为 时时,直线没有斜率这时直线直线没有斜率这时直线 与与y轴平行轴平行或重合,它的方程不能用点斜式表示。或重合,它的方程不
3、能用点斜式表示。但因直线上每一点的横坐标都等于但因直线上每一点的横坐标都等于 (图图3),所),所以它的方程是以它的方程是 ll9001x1xx ox xyl1p图图2 200,0()P x yoyx1p00,0()P x y直线直线 经过点经过点 ,且倾斜,且倾斜角角 ,求直线,求直线 的点斜式方的点斜式方程程ll0( 2,3)P 045课堂练习:课堂练习:1.写出下列直线的点斜式方程:写出下列直线的点斜式方程:(1)经过点)经过点A(3, 1),斜率是,斜率是;2(2)经过点)经过点B( , 2),倾斜角是,倾斜角是30;2 (3)经过点)经过点C(0, 3),倾斜角是,倾斜角是0;(4)
4、经过点)经过点D(4, 2),倾斜角是,倾斜角是120.2.填空题:填空题:(1)已知直线的点斜式方程是)已知直线的点斜式方程是 y2=x1,那么此直线的那么此直线的斜率是斜率是_,倾斜角是倾斜角是_.(2)已知直线的点斜式方程是)已知直线的点斜式方程是 y2= (x1),那么此直线那么此直线的斜率是的斜率是_,倾斜角是倾斜角是_.3)3(21xy)2(332 xy3 y)4(32 xy1 453 60lyOxP0(0, b)直线经过点直线经过点 ,且斜率为且斜率为 的点斜式方程?的点斜式方程?bP, 00k(0)ybk xykxb斜率斜率在在 y轴的截距轴的截距【注意】【注意】适用范适用范围
5、:围:斜率斜率K存在存在直线的直线的斜截式方程斜截式方程 y=kx+b 直线方程的直线方程的斜截式斜截式 .OyxP(0,b)截距与距离不一样,截距可正、可零、可负截距与距离不一样,截距可正、可零、可负, 而距离不能为负。而距离不能为负。思考思考2:截距与距离一样吗?截距与距离一样吗?练习:练习:写出下列直线的斜率和在写出下列直线的斜率和在y y轴上的截距:轴上的截距:23) 3(3)2(231yxxyxy)(例例2:直线直线l的倾斜角的倾斜角 60,且,且l 在在 y 轴上的截轴上的截距为距为3,求直线,求直线l的斜截式方程。的斜截式方程。练习练习:写出下列直线的斜截式方程。写出下列直线的斜
6、截式方程。(1) 斜率是斜率是 ,在,在y轴上的截距是轴上的截距是-2;23(2) 斜率是斜率是-2,在,在y轴上的截距是轴上的截距是4;2-23xy 答案:答案:42-xy答案:答案: 2. 2.两点式两点式: :已知直线已知直线 经过点经过点 和和 ( )( )求直线求直线 的方程的方程. .l),(111yxpl1x2x)(222yxp121121xxxxyyyy 这个方程是由直线上两点确定的,叫做这个方程是由直线上两点确定的,叫做直线方程的直线方程的两点式两点式。例:求经过两点例:求经过两点P(a,0),Q(0,b)的直线的直线l方程方程 截距式截距式: :这个方程是由直线在这个方程是
7、由直线在x x 轴和轴和 y y 轴的截距式确定的轴的截距式确定的, ,叫做直线方程的叫做直线方程的截截距式距式 . .1byax温故知新温故知新指明直线方程几种形式的应用范围指明直线方程几种形式的应用范围. .点斜式点斜式y yy y0 0 = k = k(x xx x0 0)斜截式斜截式 y = kx + by = kx + b两点式两点式),(2121121121yyxxxxxxyyyy截距式截距式0,1babyax有斜率的直线有斜率的直线不垂直于x,y轴的直线不垂直于x,y轴的直线不过原点的直线 5.5.一般式一般式: :关于关于x x和和y y的一次方程都表的一次方程都表示一条直线示
8、一条直线. .我们把方程我们把方程 Ax+By+C = 0( ( 其中其中A A、B B 不全为零不全为零) )叫做直线方程的叫做直线方程的一般式一般式 . .求下列直线方程求下列直线方程。1.1.经过点经过点A(2,5) , A(2,5) , 斜率是斜率是4;4;2.2.经过两点经过两点 M(2,1) M(2,1) 和和 N(0,-3);N(0,-3);3. .3. .经过两点经过两点 M(0,5) M(0,5) 和和 N(5,0)N(5,0)4. .4. .经过经过M(6,-4) , -4/3M(6,-4) , -4/3为斜率的直线的一般方为斜率的直线的一般方程程5 5已知直线已知直线l
9、l的方程为的方程为的倾斜角求直线 lyx0435、已知直线经过点、已知直线经过点A(4,-3),斜率为),斜率为-23求直线的点求直线的点斜式方程,并化为一般式方程斜式方程,并化为一般式方程.6、已知三角形三个顶点分别为、已知三角形三个顶点分别为A(-3,0),B(2,-2),C(0,1)求这个三角形三边各自所在直线的方求这个三角形三边各自所在直线的方程。程。 直线的斜率的正负确定直线通过的直线的斜率的正负确定直线通过的象限象限. .当斜率大于当斜率大于0时时当斜率小于当斜率小于0时时y=kx+b (k0,b0)y=x y=kx+b (k0,b0)yxoy=kx+b(k0y=-xy=kx+b(
10、k0,b0yxo课堂练习课堂练习课堂练习:课堂练习:1.1.直线直线ax+by+c=0ax+by+c=0,当,当ab0,bc0ab0,bc0,AB0,AC0 (B) AC0 (B) AB0,AB0,AC0C0 (C) A (C) AB0,AB0 (D) AC0 (D) AB0,AB0,AC0C0B例例2 2、设直线、设直线l l的方程为的方程为(m m2 2-2m-3-2m-3)x+x+(2m2m2 2+m-1+m-1)y=2m-6y=2m-6,根据下列条件确定根据下列条件确定m m的值:的值:(1 1)l l在在X X轴上的截距是轴上的截距是-3-3;(2 2)斜率是)斜率是-1.-1.35
11、1、直线、直线l过点过点A(1,2)且不过第四象限,那么)且不过第四象限,那么l的斜率的斜率的取值范围为的取值范围为A、【1,2】 B 0,1 C 0,12 D 0,122、若过点、若过点p(1-a,1+a)和和Q(3,2a)的直线的倾斜角为钝角,的直线的倾斜角为钝角,那么实数那么实数a的取值范围为的取值范围为3、已知三点、已知三点A(2,-3)B(4,3)C(5,k2),在同一条在同一条直线上,则直线上,则k的值为的值为4、已知、已知A(1,1),B(3,5) C(a,7),D(-1,b)四点在同一条直线四点在同一条直线上,求直线的斜率上,求直线的斜率k以及以及a,b的值。的值。3、已知点、
12、已知点A(2,-3),B(-3,-2),直线直线l过点过点P(3,1)且与线段且与线段AB相交,求直线相交,求直线l的斜率的取值范围。的斜率的取值范围。(-2,1)12K=2,a=4,b=-3【12,4】-1,1450,1350), 1 ) 1,(定点问题定点问题1,直线,直线y=k(x-2)+3必过定点必过定点2, 1、若过点、若过点P(-1,-3)的直线)的直线l与与y轴的正半轴没有公共点,轴的正半轴没有公共点,求直线求直线L的斜率的斜率2、设线、设线L的方程为(的方程为(a+1)x+y+2-a=01)若直线若直线l在两坐标轴上的截距相等,求直线在两坐标轴上的截距相等,求直线l 的方程的方
13、程2)若直线)若直线l不经过第二象限,求实数不经过第二象限,求实数a的取值范围的取值范围3、一束光线从点、一束光线从点A(-2,3)射入,经)射入,经x轴上点轴上点P反射,反射,通过点通过点B(5,7),求点求点P的坐标的坐标3、A,B两厂距离一条小河分别为两厂距离一条小河分别为400m和和100m,A,B两厂之间的距离为两厂之间的距离为500m,把一条小河看成一条直线,把一条小河看成一条直线,今在小河边建一座提水站,供今在小河边建一座提水站,供A,B两厂用水,要使提两厂用水,要使提水站到水站到A,B两厂铺设的水管长度之和最小,提水站应两厂铺设的水管长度之和最小,提水站应建在什么地方?建在什么
14、地方?1、若直线(、若直线(2t-3)x+y+6=0不经过第一象限,则不经过第一象限,则t的取值范围为的取值范围为),232、经过点、经过点A(1,2)并且在两个坐标轴上的截距的绝并且在两个坐标轴上的截距的绝对值相等的直线方程有对值相等的直线方程有条条33、已知三角形、已知三角形ABC三个顶点的坐标为三个顶点的坐标为A(1,2),B(3,6),C(5,2),M为为A,B的中点,的中点,N为为A,C的中点,则中的中点,则中位线位线MN所在的直线方程为所在的直线方程为2x+y-8=04、设点、设点A(4,0),),B(0,2),动点动点P(x,y)在线段在线段AB上上运动,运动,1)求)求xy的最
15、大值。的最大值。2)在)在1)中)中xy取最大值的前提下,是否存在过点取最大值的前提下,是否存在过点P的直线的直线L,使得,使得L与两坐标轴的截距相等?若存在,与两坐标轴的截距相等?若存在,求求L的方程,不存在,说明理由的方程,不存在,说明理由P(2,1) x-2y=0, x+y-3=0求直线与两坐标轴围成的图形面积和周长求直线与两坐标轴围成的图形面积和周长1、求斜率为、求斜率为34,且与坐标轴围成的三角形周长为且与坐标轴围成的三角形周长为12的直线方程的直线方程2、已知一条直线过点、已知一条直线过点A(-2,2)并且与两坐标轴)并且与两坐标轴围成的三角形的面积为围成的三角形的面积为1,求此直
16、线方程。,求此直线方程。1 1、设设A A、B B是是x x轴上的两点,点轴上的两点,点P P的横坐标为的横坐标为2 2,且,且PA=PBPA=PB,若直线,若直线PAPA的方程为的方程为x-y+1=0 x-y+1=0,则直线,则直线PBPB的方程是的方程是x+y-5=x+y-5=0 02、求过点、求过点A(5,2)且在两坐标轴上截距互为相反数且在两坐标轴上截距互为相反数的直线方程的直线方程3、已知直线、已知直线L:14xmym1)若直线的斜率是)若直线的斜率是2,求,求m的值的值2)若直线)若直线l与两坐标轴的正半轴围成三角形的与两坐标轴的正半轴围成三角形的面积最大,求此直线的方程面积最大,
17、求此直线的方程已知直线已知直线 的方程分别为的方程分别为: :21,ll0111CyBxA0222CyBxA 如何用系数表示两条直线的平如何用系数表示两条直线的平行与垂直的位置关系行与垂直的位置关系? ?思考题思考题:1212(2)1llkk 121212(1)/llkkbb,且例例3、已知直线、已知直线 试讨论:试讨论: (1) 的条件是什么?的条件是什么? (2) 的条件是什么?的条件是什么?111222:,:lyk xblyk xb12/ll12ll练习练习1、判断下列各对直线是否平行或垂直:、判断下列各对直线是否平行或垂直: 1211(1):3,:222lyxlyx1253(2):,:
18、35lyx lyx 12/ll12ll数学之美:数学之美:巩固练习:巩固练习:1.1.下列方程表示直线的什么式?倾斜角各为多少度?下列方程表示直线的什么式?倾斜角各为多少度? 1) 1) 2) 2) 3) 3)32xy233xy3332xy 2.2.方程方程 表示表示( )( ) A) A)通过点通过点 的所有直线;的所有直线; B B)通过点)通过点 的所有直线;的所有直线; C C)通过点)通过点 且不垂直于且不垂直于x x轴的所有直线;轴的所有直线; D D)通过点)通过点 且去除且去除x x轴的所有直线轴的所有直线. .)3(2xky3, 2 2 , 32 , 32 , 3030045
19、060C C过点过点(2, 1)且平行于且平行于x轴的直线方程为轴的直线方程为_过点过点(2, 1)且平行于且平行于y轴的直线方程为轴的直线方程为_过点过点(2, 1)且过原点的直线方程为且过原点的直线方程为_思维拓展思维拓展11y2xxy21(4 4)一直线过点)一直线过点 ,其倾斜角等于,其倾斜角等于直线直线 的倾斜角的的倾斜角的2 2倍,求直线倍,求直线 的方程的方程. .lxy333 , 1A拓展拓展2:过点过点(1, 1)且与直线且与直线y2x7平行的直线平行的直线 方程为方程为_过点过点(1, 1)且与直线且与直线y2x7垂直的直线垂直的直线 方程为方程为_12 xy2321xy小
20、结:直线方程名称已知条件直线方程使用范围点斜式斜截式斜率k和直线在y轴上的截距bkxy点点),(111yxP和斜率k)(11xxkyy斜率必须存在斜率必须存在0 xx直直线线方方程程为为:斜率斜率不不存在时,存在时,xylP2(x2,y2)2121yykxx211121()yyyyxxxxP1(x1,y1)00()yyk xx代入得探究:探究:已知直线上两点已知直线上两点P P1 1(x(x1 1,y,y1 1), P), P2 2(x(x2 2,y,y2 2) )(x x1 1xx2 2, y, y1 1yy2 2 ),求通过这两点的直线方程?),求通过这两点的直线方程?1112122121
21、(,)yyxxxxyyyyxx两点式:【注意注意】当直线没斜率或斜率为当直线没斜率或斜率为0时时,不能用两点式来表示;不能用两点式来表示;1.1.求经过下列两点的直线的两点式方程,再化求经过下列两点的直线的两点式方程,再化斜截式方程斜截式方程. .(1)P(2,1),Q(0,-3)(2)A(0,5),B(5,0)(3)C(-4,-5),D(0,0)123 10 2yx 2 3yx 500550yx5yx 005 04 0yx 54yx课堂练习:课堂练习:方法小结方法小结已知已知两点坐标两点坐标,求直线方程的方法:,求直线方程的方法: 用用两点式两点式 先求出斜率先求出斜率k k,再用点,再用点
22、斜式斜式。截距式方程截距式方程xylA(a,0)截距式方截距式方程程B(0,b)代入两点式方程得代入两点式方程得化简得化简得1xyab横横截距截距纵纵截距截距000yxaba【适用范围适用范围】截距式适用于横、纵截距都截距式适用于横、纵截距都存在存在且都且都不为不为0 0的直线的直线. .横横截距截距与与x轴交点的横坐标轴交点的横坐标纵纵截距截距与与y轴交点的纵坐标轴交点的纵坐标2.2.根据下列条件求直线方程根据下列条件求直线方程(1)在)在x轴上的截距为轴上的截距为2,在,在y轴上的截距是轴上的截距是3;(2)在)在x轴上的截距为轴上的截距为-5,在,在y轴上的截距是轴上的截距是6;由截距式
23、得:由截距式得: 整理得:整理得:123xy326 0 xy 由截距式得:由截距式得: 整理得:整理得:156xy6530 0 xy解解: :y=2x (与与x轴和轴和y轴的截距都为轴的截距都为0)即:a=3121aa把把(1,2)代入得:代入得:1xyaa设设 直线的方程为直线的方程为:2)当两截距都等于当两截距都等于0时时1)当两截距都不为当两截距都不为0时时解:三条解:三条 变:变: 过过(1,2)(1,2)并且在两个坐标轴上的截距的并且在两个坐标轴上的截距的 绝对值相等的直线有几条绝对值相等的直线有几条? ? 解得:解得:a=b=3或或a=-b=-1直线方程为:直线方程为:y+x-3=
24、0、y-x-1=0或或y=2x1xyabab设设对截距概念的深刻理解对截距概念的深刻理解 【变变】:过过(1,2)(1,2)并且在并且在y y轴上的截距是轴上的截距是x x轴上轴上的截距的的截距的2 2倍的直线是(倍的直线是( )A、 x+y-3=0 B、x+y-3=0或或y=2xC、 2x+y-4=0 D、2x+y-4=0或或y=2x名名 称称 条条 件件 方程方程 适用范围适用范围 bkxy)(00 xxkyy1byax小结小结点点P(x0,y0)和斜率和斜率k点斜式点斜式斜截式斜截式两点式两点式截距式截距式斜率斜率k, y轴上的纵截距轴上的纵截距b在在x轴上的截距轴上的截距a在在y轴上的
25、截距轴上的截距bP1(x1,y1),P2(x2,y2)有斜率有斜率有斜率有斜率不垂直于不垂直于x、y轴的直线轴的直线不垂直于不垂直于x、y轴,且不过原轴,且不过原点的直线点的直线121121xxxxyyyy 斜截式斜截式截距式截距式点斜式点斜式应用范围应用范围直线方程直线方程已知条件已知条件方程名称方程名称两点式两点式P11点 (x ,y )斜 率 k斜率kb截距存在斜率存在斜率k存在斜率存在斜率kykxb11()yyk xx112121yyxxyyxx1xyab222( ,)P x y111P(x,y ),1212(,)xxyy(0)a a 横截距(0)b b 纵截距不包括垂直于坐标不包括垂
26、直于坐标轴的直线轴的直线不包括垂直于不包括垂直于x,y坐标坐标轴和过原点的直线轴和过原点的直线【注注】所求直线方程结果最终化简为一般式的形式所求直线方程结果最终化简为一般式的形式Ax+By+C=0Ax+By+C=0中点坐标公式中点坐标公式xyA(x1,y1)B(x2,y2)中点中点121222xxxyyy例例2 2、三角形的顶点是、三角形的顶点是A(-5,0),B(3,-3),C(0,2)A(-5,0),B(3,-3),C(0,2),求求BCBC边所在直线的方程边所在直线的方程? ?x xy yO OC CB BA A.M M变式变式1:BC1:BC边上垂直平分线所在直线的方程边上垂直平分线所
27、在直线的方程? ?变式变式2:BC2:BC边上高所在直线的方程边上高所在直线的方程? ?3x-5y+15=03x-5y-7=0练习练习:1:12(3,4)l yxPl已知直线,求点关于直线 的对称点数形结合与对称的灵活应用数形结合与对称的灵活应用已知直线已知直线l:x-2y+8=0和两点和两点A(2,0)、B(-2,-4)(1)求点)求点A关于直线关于直线l的对称点的对称点(2)在直线)在直线l是求一点是求一点P,使,使|PA|+|PB|最小最小(3)在直线)在直线l是求一点是求一点Q,使,使| |QA|-|QB| |最大最大A(2,0)A1(x,y)GB(-2,-4)PA(2,0)QB(-2
28、,-4)(-2,8)(-2,3)(12,10)数形结合与对称的灵活应用数形结合与对称的灵活应用已知一条光线从点已知一条光线从点A(2,-1)发出、经发出、经x轴反射后,轴反射后,通过点通过点B(-2,-4),与,与x轴交与点轴交与点P,试求点,试求点P坐标坐标A(2,-1)(x,0)B(-2,-4)P变:变:已知两点已知两点A(2,-1)、B(-2,-4)试在试在x轴上求一点轴上求一点P,使,使|PA|+|PB|最小最小变:变:试在试在x轴上求一点轴上求一点P,使,使|PB|-|PA|最大最大2.2.根据下列条件求直线方程根据下列条件求直线方程(1)在)在x轴上的截距为轴上的截距为2,在,在y
29、轴上的截距是轴上的截距是3;(2)在)在x轴上的截距为轴上的截距为-5,在,在y轴上的截距是轴上的截距是6;由截距式得:由截距式得: 整理得:整理得:123xy326 0 xy 由截距式得:由截距式得: 整理得:整理得:156xy6530 0 xy1xyab) )表表示示; ;y y) )( (y yx x( (x x) )x x) )( (x xy y都都可可以以用用方方程程( (y y ) )的的点点的的直直线线y y, ,( (x xP P) ), ,y y, ,( (x xP PD D. .经经过过任任意意两两个个不不同同b b表表示示. .k kx x可可以以用用y yC C. .经经过过定定点点的的直直线线都都1 1表表示示; ;b by ya ax x都都可可以以用用方方程程B B. .不不经经过过原原点点的的直直线线) )表表示示; ;x xk k( (x xy y方方程程y y ) )的的直直线线都都可可以以用用y y, ,( (x xA A. .经经过过定定点点P P) ) 题题是是( (下下列列四四个个命命题题中中的的真真命命1 12 21 11 12 21 12 22 22 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 15883-3:2024 EN Washer-disinfectors - Part 3: Requirements and tests for washer-disinfectors employing thermal disinfection for human waste containers
- 劳动合同纠纷仲裁代理词撰写指南
- 美国专有技术转让合同案例
- 企业合同权益转让协议书案例
- 房地产代理销售合同书范文示例
- 工程项目管理合同的关键条款
- 代售协议书范例
- 店面临时租赁合同书
- 2024宽带接入电信服务协议范本
- 小产权住宅购买协议书
- 2023年山东省春季高考数学试卷(解析版)
- 抚州市乐安县乡镇街道社区行政村统计表
- 园林空间-课件
- 《高等数学》全册教案教学设计
- 市场主体迁移申请书
- 微观交易结构系列之二:不容忽视的交易成本量化个股隐性成本
- 商会各类岗位职责
- 四年级上册英语课件- M3U2 Around my home (Period 3) 上海牛津版试用版(共18张PPT)
- 酒店装饰装修工程验收表
- 新北师大版六年级上册数学全册教案(教学设计)
- 调研报告:关于棚户区改造现状、存在问题及对策建议
评论
0/150
提交评论