下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、探索多边形的内角和、外角和一、教学目标:(1)知识与技能:掌握多边形的内角和与外角和的计算方法,并能用其解决一些简单的 问题;通过多边形内角和计算公式的推导,体验转化和类比的数学思想方法。(2)过程与方法:、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推 理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。、通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方 法。通过探索多边形的内角和与外角和, 让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。(3)情感态度与价值观:通过动手实践、相互间的交流,进一步激发学习热
2、情和求知欲 望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探 索和创造。二、教学重、难点:重点:探索多边形的内角和及外角和公式。 难点:多边形内角和公式的推导。三、教法学法设计:以教师的精讲、点拨引导为主,辅以引导发现、合作交流。四、教具、学具准备:多媒体课件、三角板、量角器。五、教学过程:(一)复习提问,导入新课问题:三角形的内角和是多少度?正方形和长方形的内角和又是多少度? 【设计说明】直接提出问题,唤醒学生已有的知识,把学生引到本节课思维的最近发展区, 为新课学习提供知识铺垫。(二)引申思考,探索新知(1)探究活动一:探索四边形内角和。问题:我们已经知道正
3、方形和长方形的内角和为 你是怎么得到的?在学生独立思考的基础上,分组交流,并汇总解决问题的方法:做法测量法。量出任意一个四边形每个内角度数,然后相加为360。(让学生明确使用这种做法的缺陷是往往会引起误差,得不到预想的结果) 做法拼图法。把四个角拼在一起刚好是一个周角360。(让学生明确使用这种做法的局限性,不是任何情况都可以采用这种办法验证四边形的内 角和。)教师在做法的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化为两个三角形连结AC四边形的内角和为2X180 =360学生【设计说明】通过活动一的探究,学生易把四边形分 割成三角形,从而把四边形的内角和与三角形的内角
4、和有效的 联系起来,求出任意四边形的内角和。这个环节着重渗透分 割转化的思想方法。为探究n边形的内角和做准备。(2)探究活动二:探索五边形、六边形、七边形的内角和 学生先独立思考每个问题再分组讨论。关注学生能否类比四边形的方式解决问题得出正确的结论。360,那么任意四边形的内角和是多少?An学生能否采用不同的方法。 学生分组讨论后进行交流(五边形的内角和)A.把五边形分成三个三角形,3个180o的和是5400。B.把五边形分成一个三角形和一个四边形,然后用180o加上360o,结果得5400。交流得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比 四边形、五边形的讨论方法
5、最终得出,六边形内角和是7200,七边形内角和是9000。师:通过前面的讨论,你能知道多边形内角和吗? 活动三:探究任意多边形的内角和公式。思考多边形内角和与三角形内角和的关系?2多边形的边数与内角和的关系?3从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系? 学生结合思考题进行讨论,并把讨论后的结果进行交流。发现1:四边形内角和是(4-2)个180o的和,五边形内角和是(5-2)个180o的和,六边形内角和是(6-2)个180o的和,七边形内角和是(7-2)个180o的和。 发现2:多边形的边数增加1,内角和增加1800。发现3:从五边形的一个顶点出发,可以引(5-3)条对角线,将
6、五边形分成(5-2)个三角形,从六边形的一个顶点出发,可以引(6-3)条对角线,将六边形分成(6-2)个三角形,从n边形的 一个顶点出发,可以引(n-3)条对角线,将n边形分成(n-2)个三角形.得出结论:多边形内角和公式:(n-2 )?180o【设计说明】逐步增加图形的复杂性,再一次经历转化的过程,加深对转化的思想方法的 理解,体会由简单到复杂、由特殊到复杂的思想方法。想一想:把一个多边形分成几个三角形,可以得到多边形的内角和。除利用对角线把多 边形分成几个三角形外,还有其他分法吗?以四边形为例。学生动手并与同伴交流,老师归纳,多媒体演示。【设计说明】让学生再一次经历转化的过程,注意培养学生
7、思维的灵活性,进一步发展 学生的推理能力和语言表达能力。(三)巩固应用新知(1)课本36页例1.(2)练习:136页练习12填空:?1?八边形的内角和等于()度。?2?如果一个多边形的内角和为3600度,它是()边形。【设计说明】与探究多边形的内角和的过程相呼应以及多边形内角和公式的基础运用, 让学生人人都能获得必需的数学知识。(四)探索多边形的外角和问题: (1)小丽家有一张六边形的地毯,小丽绕各顶点 走了一圈,回到起点A,他的身体旋转了多少度?女如:六边形外角和等于多少度?学生思考作答,教师作适当点拨。通过课件演示,学生发现:六边形的外角和等于360问题(2)n边形外角和等于多少度?教师引
8、导学生利用多边形的内角和公式,进一步 论证六边形外角和等于360。即:六个平角减去 六边形内角和等于六边形外角和360(3)进行类比推理并小结:n边形外角和等于n个平 角减去n边形内角和,与边数无关。180n-(n-2) 180=360总结:n边形外角和等于360【设计说明】经历现实情况引出六边形的外角和等于360,从学生已有的生活经验出发, 更能激发学生的学习兴趣。通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题, 化未知为已知的思想方法。巩固练习:(1)课本38页练习1、2题。(2)思考:小明有一个设想:2012年奥运会在伦敦召开, 他想设计一个内角和是2012的多边形图案该多有意义呀,小明的想法能实现吗?【设计说明】教师及时了解学生的学习效果,让学生经历用知识解决问题的过程。同时以 学生感兴趣的话题为作业,激发学生的学习的积极性,提高学生的学习兴趣,巩固本节课的 内容,建立学好数学的自信心。(五)课堂小结问题:谈谈本节课你有哪些收获?【设计说明】鼓励学生积极发言, 并对学生的进步给予肯定, 树立学生学好数学的自信心。 再一次发展学生的评理能力和语言表达能力。(六)作业布置(1)课本85页复习巩固5题、6题、8题。课后记: 本次课在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自 觉探究数学问题,体验发现的乐趣;学生的角色从学会转变为会学。学生应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 荒山绿化施工合同
- 供货协议书集锦八篇
- 二零二四年度充电桩火灾防治与应急响应合同
- 2024年度战略合作合同:互联网企业间业务合作与资源共享
- 2024年度物业服务补充合同
- 2024年度教育培训预付款协议
- 二零二四年度房地产中介与销售服务合同
- 2024年度餐饮供应链合作协议
- 2024保育员个人工作计划(33篇)
- 2024年度内蒙古自治区牧草种植收购合同
- (统编版2024)语文七年级上册 第四单元 《阅读综合实践 》 课件(新教材)
- GB/T 2423.17-2024环境试验第2部分:试验方法试验Ka:盐雾
- 2024粤东西粤北地区教师全员轮训培训心得总结
- ICS国际标准分类号
- 学习能力的培养ppt课件
- 中国抑郁障碍防治指南(第二版)简介完整版
- 旅行社低价竞争问题的分析与思考
- 涂料生产工艺流程(SEM)
- Aisino A3常见问题分析及服务技巧
- 国家免费艾滋病抗病毒治疗药品管理指导意见
- 天津市津南区北闸口镇总体规划
评论
0/150
提交评论