二元一次方程组应用题经典题_第1页
二元一次方程组应用题经典题_第2页
二元一次方程组应用题经典题_第3页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、WORD格式1实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的根本思想列方程组解应用题是把“未知 转化为 “ 的重要方法, 它的关键是把量和未知量联系起来,专业资料整理WORD格式找出题目中的相等关系.一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示专业资料整理WORD格式的是同类量;(2) 同类量的单位要统一;(3) 方程两边的数值要相等.专业资料整理WORD格式知识点二:列方程组解应用题中常用的根本等量关系1.行程问题:专业资料整理WORD格式(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段 ,用图便于理解

2、与分析。 其等量关系式是 :两者的行程差开场时两者相距的路程;专业资料整理WORD格式;(2) 相遇问题 :相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和总路程。(3) 航行问题:船在静水中的速度水速船的顺水速度;船在静水中的速度水速船的逆水速度;顺水速度逆水速度2×水速。注意: 飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。2工程问题:工作效率×工作时间=工作量 .3商品销售利润问题:(1) 利润售价本钱(进价 ) ;(2); (3)利润

3、本钱进价×利润率;(4) 标价本钱 (进价 )× (1利润率 ); (5) 实际售价标价×打折率;注意:“商品利润售价本钱中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价的十分之几或百分之几十销售。例如八折就是按标价的十分之八即五分之四或者百分之八十4储蓄问题:(1) 根本概念本金:顾客存入银行的钱叫做本金。利息:银行付给顾客的酬金叫做利息。本息和:本金与利息的和叫做本息和。期数:存入银行的时间叫做期数。利率:每个期数内的利息与本金的比叫做利率。利息税:利息的税款叫做利息税。(2) 根本关系式利息本金×利率×期数本息和本金利息本金本金

4、×利率×期数本金×(1利率×期数)利息税利息×利息税率本金×利率×期数×利息税率。专业资料整理WORD格式2税后利息利息×(1 利息税率 ) 年利率月利率×12 。注意: 免税利息 =利息5配套问题:解这类问题的根本等量关系是:总量各局部之间的比例=每一套各局部之间的比例。6增长率问题:解这类问题的根本等量关系式是:原量×(1增长率 )增长后的量;原量× (1减少率 )减少后的量 .7和差倍分问题:解这类问题的根本等量关系是:较大量较小量多余量,总量倍数×倍量.8数

5、字问题:专业资料整理WORD格式解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。如当n 为整数时,专业资料整理WORD格式奇数可表示为2n+1( 或2n-1) ,偶数可表示为2n 等,有关两位数的根本等量关系式为:两位数=十位数字专业资料整理WORD格式10+个位数字专业资料整理WORD格式9浓度问题:溶液质量×浓度=溶质质量 .10几何问题:解决这类问题的根本关系式有关几何图形的性质、周长、面积等计算公式11年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12优化方案问题:在解决问题时,常常需合理安排。需要从几种方案中,选

6、择最正确方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最正确方案。注意: 方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最正确方案。知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1审题 :弄清题意及题目中的数量关系;2设未知数 :可直接设元,也可间接设元;3找出题目中的等量关系;4列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组专业资料整理WORD格式成方程组;5解所列的方程组,并检验解的正确性;6写出答案.专业资料整理WORD格式要点诠释:专业资料整理WORD格式(1)解实际应

7、用问题必须写“答,而且在写答案前要根据应用题的实际意义,检查求得的结果是否专业资料整理WORD格式合理,不符合题意的解应该舍去;专业资料整理WORD格式(2) “设、“答两步,都要写清单位名称;(3) 一般来说,设几个未知数就应该列出几个方程并组成方程组.(4) 列方程组解应用题应注意的问题弄清各种题型中根本量之间的关系;审题时,注意从文字,图表中获得有关信息;注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;正确书写速度单位,防止与路程单位混淆;在寻找等量关系时,应注意挖掘隐含的条件;列方程组解应用题一定要注意检验。专业资料整理WORD格式

8、3类型一:列二元一次方程组解决 行程问题专业资料整理WORD格式1甲、乙两地相距160 千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1 小时20专业资料整理WORD格式分相遇 .相遇后, 拖拉机继续前进,汽车在相遇处停留1 小时后调转车头原速返回,时后追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米?思路点拨: 画直线型示意图理解题意:在汽车再次出发半小专业资料整理WORD格式(1) 这里有两个未知数:汽车的行程;拖拉机的行程.(2) 有两个等量关系:相向而行:汽车行驶小时的路程拖拉机行驶小时的路程160 千米 ;专业资料整理WORD格式同向而行:汽车行驶小时的路程拖拉机行驶小时的路

9、程.专业资料整理WORD格式解: 设汽车的速度为每小时行千米,拖拉机的速度为每小时千米 .专业资料整理WORD格式根据题意,列方程组解这个方程组,得:.专业资料整理WORD格式答:汽车行驶了165 千米,拖拉机行驶了85 千米 .总结升华: 根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。【变式 1】甲、乙两人相距36 千米,相向而行,如果甲比乙先走2 小时,那么他们在乙出发2.5时后相遇;如果乙比甲先走2 小时,那么他们在甲出发3 小时后相遇,甲、乙两人每小时各走多少千米?小专业资料整理WORD格式4【变式 2】两地相距280 千米,一艘船在其间航行

10、,顺流用14 小时,逆流用20 小时,求船在静水中的速度和水流速度。专业资料整理WORD格式类型二:列二元一次方程组解决 工程问题专业资料整理WORD格式2一家商店要进展装修,假设请甲、 乙两个装修组同时施工,8 天可以完成, 需付两组费用共3520元;假设先请甲组单独做6 天,再请乙组单独做12 天可完成,需付两组费用共3480 元,问: (1) 甲、乙两专业资料整理WORD格式组工作一天,商店应各付多少元?(2) 甲组单独做需12 天完成,乙组单独做需24 天完成,单独请哪专业资料整理WORD格式组,商店所付费用最少?专业资料整理WORD格式思路点拨: 此题有两层含义,各自隐含两个等式,第

11、一层含义:假设请甲、乙两个装修组同时施工,8专业资料整理WORD格式天可以完成,需付两组费用共3520 元;第二层含义:假设先请甲组单独做6 天,再请乙组单独做12 天可完专业资料整理WORD格式成,需付两组费用共3480 元。设甲组单独做一天商店应付x 元,乙组单独做一天商店应付y 元,由第一专业资料整理WORD格式层含义可得方程8x+y =3520, 由第二层含义可得方程6x+12y=3480.专业资料整理WORD格式解:(1)设甲组单独做一天商店应付x 元,乙组单独做一天商店应付y 元,依题意得:专业资料整理WORD格式解得答:甲组单独做一天商店应付300 元,乙组单独做一天商店应付14

12、0 元。(2) 单独请甲组做,需付款300×12 3600 元,单独请乙组做,需付款24× 1403360 元,故请乙组单独做费用最少。答:请乙组单独做费用最少。总结升华: 工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为 1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进展分析。【变式】 小明家准备装修一套新住房,假设甲、乙两个装饰公司合作6 周完成需工钱5.2 万元;假设甲公司单独做4 周后,剩下的由乙公司来做,还需9 周完成,需工钱4.8 万元 . 假设只选一个公司单独完成,从节约开支的角度考虑,小明家应选

13、甲公司还是乙公司?请你说明理由.专业资料整理WORD格式5类型三:列二元一次方程组解决 商品销售利润问题专业资料整理WORD格式3有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46 元。价风格整专业资料整理WORD格式后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44 元,那么两件商品的进价分别是多少元?思路点拨 :做此题的关键要知道:利润进价×利润率解:甲商品的进价为x 元,乙商品的进价为y 元,由题意得:专业资料整理WORD格式,解得:答:两件商品的进价分别为600 元和 400 元。【变式 1】2021*李大叔去年承包了10 亩地种植甲、乙两种

14、蔬菜,共获利18000 元,其中甲种蔬菜每亩获利2000 元,乙种蔬菜每亩获利1500 元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【变式 2】某商场用36 万元购进 A、 B 两种商品,销售完后共获利6 万元,其进价和售价如下表:AB进价元 / 件12001000售价元 / 件13801200注:获利 = 售价进价求该商场购进A、 B 两种商品各多少件;类型四:列二元一次方程组解决 银行储蓄问题4小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000 元钱,一种是年利率为 2.25 的教育储蓄,另一种是年利率为2.25 的一年定期存款,一年后可取出2042.75元,问这

15、两种储蓄各存了多少钱?利息所得税利息金额×20%,教育储蓄没有利息所得税思路点拨:设教育储蓄存了x 元,一年定期存了y 元,我们可以根据题意可列出表格:专业资料整理WORD格式6解:设存一年教育储蓄的钱为x 元,存一年定期存款的钱为y 元,那么列方程:,解得:专业资料整理WORD格式答:存教育储蓄的钱为1500 元,存一年定期的钱为500 元 .总结升华 :我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来【变式 1】李明以两种形式分别储蓄了2000 元和 1000

16、元,一年后全部取出,扣除利息所得税可得利.专业资料整理WORD格式息 43.92 元. 两种储蓄年利率的和为 3.24%,问这两种储蓄的年利率各是百分之几?注:公民应缴利息所得税 =利息金额× 20%专业资料整理WORD格式【变式 2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了一年期整存整取,共反复存了3 次,每次存款数都一样,这种存款银行利率为年息期整存整取,这种存款银行年利率为2.70%. 三年后同时取出共得利息303.75爸爸两种存款各存入了多少元?4000 元钱 . 第一种,2.25%;第二种,三年元 ( 不计利息税 ) ,问小敏的专业资料整理WORD格式

17、类型五:列二元一次方程组解决 生产中的配套问题5某服装厂生产一批某种款式的秋装,每 2 米的某种布料可做上衣的衣身3 个或衣袖 5 只.现方案用132 米这种布料生产这批秋装( 不考虑布料的损耗) ,应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨: 此题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132 米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2 倍 ( 注意:别把2 倍的关系写反了 ).解: 设用米布料做衣身,用米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:专业资料整理WORD格式7答:用 60 米布料做衣身,用72 米布料

18、做衣袖才能使做的衣身和衣袖恰好配套.总结升华: 生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等.各种配套都有数量比例,依次设未知数, 用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.【变式 1】现有 190 X铁皮做盒子,每X铁皮做8 个盒身或22 个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少X铁皮制盒身,多少X铁皮制盒底,可以正好制成一批完整的盒子?【变式 2】某工厂有工人60 人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20 个,应分配多少人生产螺栓,多少

19、人生产螺母,才能使生产出的螺栓和螺母刚好配套。【变式 3】一X方桌由1 个桌面、 4 条桌腿组成,如果1 立方米木料可以做桌面50 个,或做桌腿300条。现有 5 立方米的木料, 那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少X方桌?类型六:列二元一次方程组解决 增长率问题6.某工厂去年的利润总产值总支出为200 万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780 万元,去年的总产值、总支出各是多少万元?思路点拨 :设去年的总产值为x 万元,总支出为y 万元,那么有总产值万元总支出万元利润万元去年xy200今年120%

20、x90%y780专业资料整理WORD格式根据题意知道去年的利润和今年的利润,由利润=总产值总支出和表格里的量和未知量,可以列出专业资料整理WORD格式8两个等式。专业资料整理WORD格式解: 设去年的总产值为x 万元,总支出为y 万元,根据题意得:专业资料整理WORD格式,解之得:答:去年的总产值为2000 万元,总支出为1800 万元总结升华: 当题的条件较多时,可以借助图表或图形进展分析。【变式 1】假设条件不变,求今年的总产值、总支出各是多少万元?专业资料整理WORD格式【变式 2】某城市现有人口42 万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口专业资料整理WO

21、RD格式增加 1%,求这个城市的城镇人口与农村人口。专业资料整理WORD格式类型七:列二元一次方程组解决 和差倍分问题7. 2021年丰台区中考一摸试题“爱心帐篷厂和“温暖帐篷厂原方案每周生产帐篷共 9 千顶,现某地震灾区急需帐篷14 千顶,两厂决定在一周内赶制出这批帐篷为此,全体职工加班加点,“爱心帐篷厂和“温暖帐篷厂一周内制作的帐篷数分别到达了原来的1.6 倍、 1.5 倍,恰好按时完成了这项任务求在赶制帐篷的一周内,“爱心帐篷厂和“温暖帐篷厂各生产帐篷多少千顶?思路点拨: 找出量和未知量,根据题意知未知量有两个,所以列两个方程,根据方案前后,倍数关系由量和未知量列出两个等式,即是两个方程

22、组成的方程组。解:设原方案“爱心帐篷厂生产帐篷x 千顶 , “温暖帐篷厂生产帐篷y 千顶,由题意得:, 解得:所以: 1.6x=1.65=8, 1.5y=1.54=6答:“爱心帐篷厂生产帐篷8 千顶 , “温暖帐篷厂生产帐篷6 千顶 .【变式 1】 (2021年门头沟区中考一模试题)“地球一小时是世界自然基金会在2007 年提出的一项建议号召个人、社区、企业和政府在每年3 月最后一个星期六20 时 30 分 21 时 30 分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活中国内地去年和今年共有119 个城市参加了此项活动,且今年参加活动的城市个数比去年的3

23、 倍少 13 个,问中国内地去年、今年分别有多少个城市参加了此项活动专业资料整理WORD格式9【变式 2】 游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多 1 倍,你知道男孩与女孩各有多少人吗?类型八:列二元一次方程组解决 数字问题8. 两个两位数的和是 68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,前一个四位数比后一个四位数大2178,求这两个两位数。思路点拨 :设较大的两位数为 x,较小的两位数为 y。问题 1:在较大的两位数的右

24、边写上较小的两位数,所写的数可表示为:100x y问题 2:在较大数的左边写上较小的数,所写的数可表示为:100y x解:设较大的两位数为x,较小的两位数为 y。依题意可得:,解得:答:这两个两位数分别为45, 23.【变式 1】一个两位数,减去它的各位数字之和的3 倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?【变式 2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?【变式 3】某三位数,中间数字为 0,其余两个数位上数字之和是 9,如果百位数字减 1,个

25、位数字加1,那么所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。专业资料整理WORD格式类型九:列二元一次方程组解决 浓度问题专业资料整理WORD格式109现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3 7,乙种酒精溶液的酒精与水的比是 4 1,今要得到酒精与水的比为32 的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?思路点拨: 此题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:1甲种酒精溶液与乙种酒精溶液的质量之和50; 2混合前两种溶液所含纯酒精质量之和混合后的溶液所含纯酒精的质量;3混合前两种溶液所含水的质量之和混合后溶液所含

26、水的质量;4混合前两种溶液所含纯酒精之和与水之和的比混合后溶液所含纯酒精与水的比。解:法一:设甲、乙两种酒精溶液分别取x kg , y kg.依题意得:,答:甲取20kg,乙取 30kg法二:设甲、乙两种酒精溶液分别取10x kg 和 5y kg ,那么甲种酒精溶液含水7x kg ,乙种酒精溶液含水y kg ,根据题意得:,所以 10x=20,5y=30.答:甲取20kg,乙取 30kg总结升华 :此题的第 1个相等关系比较明显,关键是正确找到另外一个相等关系,解这类问题常用的相等关系是: 混合前后所含溶质相等或混合前后所含溶剂相等。 用它们来联系各量之间的关系, 列方程组时就显得容易多了。列

27、方程组解应用题,首先要设未知数,多数题目可以直接设未知数,但并不是千篇一律的,问什么就设什么。有时候需要设间接未知数,有时候需要设辅助未知数。举一反三:【变式 1】要配浓度是45%的盐水 12 千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?【变式 2】一种 35%的新农药,如稀释到1.75%时,治虫最有效。用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药 800 千克?类型十:列二元一次方程组解决 几何问题专业资料整理WORD格式10如图,用8 块一样的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?专业资料整理WORD格式11专业资料整理WORD格式

28、思路点拨 :初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,条长相等,我们设每个小长方形的长为x,宽为 y,就可以列出关于x、 y 的二元一次方程组。解:设长方形地砖的长xcm,宽 ycm,由题意得:两专业资料整理WORD格式,答:每块长方形地砖的长为45cm、宽为 15cm。专业资料整理WORD格式总结升华: 几何应用题的相等关系一般隐藏在某些图形的性质中,解答这类问题时应注意认真分析图专业资料整理WORD格式形特点,找出图形的位置关系和数量关系,再列出方程求解。举一反三:专业资料整理WORD格式【变式1】用长48 厘米的铁丝弯成一个矩形,假设将此矩形的长边剪掉3

29、 厘米,补到较短边上去,那么专业资料整理WORD格式得到一个正方形,求正方形的面积比矩形面积大多少?专业资料整理WORD格式【变式 2】一块矩形草坪的长比宽的2 倍多 10m,它的周长是132m,那么长和宽分别为多少?类型十一:列二元一次方程组解决 年龄问题11今年父亲的年龄是儿子的5 倍, 6 年后父亲的年龄是儿子的3 倍,求现在父亲和儿子的年龄各是多少?思路点拨: 解此题的关键是理解“6 年后这几个字的含义,即6 年后父子俩都长了6 岁。今年父亲的年龄是儿子的5 倍, 6 年后父亲的年龄是儿子的3 倍,根据这两个相等关系列方程。解:设现在父亲x 岁,儿子y 岁,根据题意得:,答:父亲现在30 岁,儿子 6 岁。总结升华: 解决年龄问题,要注意一点:一个人的年龄变化增大、减小了,其他人也一样增大或减小,并且增大或减小的岁数是一样的一样的时间内。【变式 1】今年,小李的年龄是他爷爷的五分之一 . 小李发现, 12 年之后,他的年龄变成爷爷的三分之一 . 试求出今年小李的年龄 .专业资料整理WORD格式12专业资料整理WORD格式类型十二:列二元一次方程组解决 优化方案问题:专业资料整理WORD格式12某地生产一种绿色蔬菜,假设在市场上直接销

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论