高中数学重要基础知识记忆检查_第1页
高中数学重要基础知识记忆检查_第2页
高中数学重要基础知识记忆检查_第3页
高中数学重要基础知识记忆检查_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.高中数学重要基础知识记忆检查一、幂函数、指数函数和对数函数1、由n个元素组成的集合,其非空真子集个数为 。2、解不等式|ax+b|c(c0) 可化为 来解。3、定义域求法的依据:(1)分式的分母 ;(2)偶次方根的被开方数 ;(3)对数函数的真数必须 ;(4)指数函数和对数函数的底数必须 且 ;(5)正切函数y =tgx (xR且x ,kZ);(6)余切函数y=ctgx(xR,且 ,kZ);(7)实际问题的函数的定义域要依 的实际意义而定。4、函数具有奇偶性的必备条件是 。5、奇偶函数与单调性的关系:(1)奇函数在单调区间内具有 的单调性;(2)偶函数在对称的单调区间上具有 的单调性。6、复

2、合函数fg(x)的单调性的判定方法是 ,但要注意单调区间一定是 的子集。7、二次函数在闭区间上的最大值和最小值: 对二次函数f(x)=a(x-k)2+h(a0)在区间m,n上的最值问题,有以下结论:(1)若km,n,则ymin=f(k)= ,ymax=maxf(m),f(n)(2)若km,n,当km时,ymin= ,ymax= ; 当kn时,ymin= ,ymax= 。8、指数函数、对数函数的图象和性质要求熟练掌握。9、函数的图象变换口诀:(1)平移变换: ;(2)伸缩变换: 。 同时注意对称变换的各种情形。二、三角函数10、诱导公式的记忆方法为 ; 如tg(2-)= ,cos(+)= 。11

3、、三角函数的奇偶性:(1)当=k(kZ)时,y=Asin(x+),y=Acos(x+)(A,0)分别为 函数和 函数;(2)当=k+(kZ)时,y=Asin(x+),y=Acos(x+)(A,0)分别为 函数和 函数。12、(1)熟练掌握16个公式:和角(3个),差角(3个),倍角(5个),降幂半角(5个), 如cos(+)= ,tg(-)= ,cos2= ,tg= = = ; (2)了解10个公式:积化和差(4个),和差化积(4个),万能公式(2个)。13、三角形中一些公式:(1)正弦定理: ;(2)余弦定理: ;(3)面积公式: 。*14、函数y=arccosx的定义域为 ,值域为 ,单调

4、性为 ,奇偶性为 ,且arccosx+ =,arccos(cosx)=x(x )。三、不等式15、若a,bR+,则ab ,当且仅当 时取等号;若a,b,cR+,则abc ,当且仅当 时取等号;若aR+,则a+ 2;若aR-,则a+ 2。16、一元一次不等式axb,当a0时,解集为 ;当a0时,解集为 ;当a=0时,若b0,则解集为 ,若b0,解集为 。17、用平方法解无理不等式的前提是 。18、含绝对值符号不等式的基本解法:(1)|f(x)|g(x) ;(2)|f(x)|g(x) ;(3)含多个绝对值符号的不等式用 解。四、数列19、已知数列an前n项和Sn求通项an,则an= 。20、等差数

5、列an的通项公式为an= ,前n项和公式为Sn= = 。21、等比数列an的通项公式为an= ,前n项和公式为Sn= 。22、公比的绝对值 的等比数列,前n 项和Sn当n时的极限,叫无穷等比数列 ,记作 。23、自然数列求和公式: ;自然数平方和公式: ;自然数立方和公式: 。24、(1)A= (A为常数);(2)an= (分三种情形);25、等比数列an中,若an存在,则公比q满足的条件为 ;若Sn存在,则公比q满足的条件为 。五、复数26、z=a+bi(a,bR)为纯虚数 ,z=a+bi(a,bR)为零 ,z=a+bi(a,bR)为实数 。27、若z=a+bi(a,bR),则|z|= ,z

6、+= 。28、i的周期性:i4n+1= , i4n+2= , i4n+3= , i4n= (nZ)。29、如果是1的立方虚根,则= ,2= ,3= ,1+2= ,·= 。30、(1+i)2= ,= ,b-ai= ·(-i).31、|z1·z2|= ,= ,|zn|= .六、排列组合、二项式定理32、排列数公式是:= = ;组合数公式是:= = ;排列数与组合数的关系是 。 33、组合数性质:= ,+= ,= 。34、二项式定理是: 。二项展开式的通项公式是:Tr+1= 。七、解析几何35、若点P分有向线段成定比,则= 。36、若点,点P分有向线段成定比,则 = =

7、 ;= ,= 。37、若,则ABC的重心G的坐标是 。38、求直线斜率的定义式为k= ,两点式为k= 。39、直线方程的点斜式为 ,斜截式为 ,两点式为 ,截距式为 ,一般式为 。40、直线,则从直线到直线的角满足 ,直线与的夹角满足 。 41、点到直线的距离是 。42、圆的标准方程是: ;圆的一般方程是 ,其中半径是 ,圆心坐标是 。43、若,则以线段AB为直径的圆的方程是 。44、圆为切点的切线方程是 。45、抛物线的焦点坐标是 ,准线方程是 。46、椭圆的焦点坐标是 ,准线方程是 ,离心率是 ,其中c=_。47、双曲线的焦点坐标是 ,准线方程是 ,离心率是 _,渐近线方程是_,其中c=_

8、。48、与双曲线共渐近线的双曲线系方程是 。49、若直线y=kx+b与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 =_;50、若直线x=my+a与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 =_。51、平移坐标轴,使新坐标系的原点在原坐标系下的坐标是(h,k),若点P在原坐标系下的坐标是,则=_,=_。八、极坐标、参数方程52、直线参数方程的一般形式是 。53、若直线经过点,则直线参数方程的标准形式是 。*54、若以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系,点P的极坐标为,。*55、经过极点,倾斜角为的直线的极坐标方程是_,经过点(a,0),且垂直于极轴的直线的极坐标方程是_,经过点且平行于极轴的直线的极坐标方程是_。*56、圆心在极点,半径为r的圆的极坐标方程是_,圆心在点(a,0),半径为a的圆的极坐标方程是_,圆心在点的圆的极坐标方程是_。九、立体几何57、掌握平面的基本性质、空间两条直线、直线和平面、两个平面的位置关系(特别是平行与垂直关系)以及它们所成的角与距离的概念,并能运用上述概念以及有关两条直线、直线和平面、两个平面的平行与垂直关系的性质与判定,进行论证和解决有关问题。58、体积公式: 柱体:_,圆柱体:_,斜棱柱体积:_,锥体:_,圆锥体:_。59、侧面积:直棱柱侧面积:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论