基因工程抗体_第1页
基因工程抗体_第2页
基因工程抗体_第3页
基因工程抗体_第4页
基因工程抗体_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基因工程抗体生命科学学院 09动物医学学号:2009082554 姓名:张孝辉 指导老师:郑新添【摘要】:基因工程抗体以其独特的优点(免疫原性低、可按人的意愿加以改造等)正逐渐取代动物源性单抗。随着基因工程和蛋白质工程等生物技术在抗体研制领域的广泛应用, 适应不同需要的基因工程抗体的种类日趋多样化, 构建日趋合理化, 在体内的生物学效应也日臻完善, 使之较天然单抗的治疗效果更好, 范围更广, 并在初步临床试用中展示了光辉的前景。 【关键词】:基因工程抗体; 生物技术【前言】:单抗作为一种有效的新型生物制剂促进了基础医学、临床医学、生物学、农学等众多生命学科的发展, 尤其在疾病的预防、诊断及治疗

2、方面的作用日益重要。然而作为体内的应用, 啮齿类动物单抗的高免疫原性, 使所有病人均发生不同程度的人抗鼠抗体反应(HAMA), 削弱了治疗的有效性, 并对清除抗体的器官产生毒性损害, 因此其应用严重受限 。为了创造出更理想的治疗用抗体分子, 将制备单抗的细胞工程技术与生产重组分子的基因工程技术和蛋白质工程技术相结合, 产生了基因工程抗体。短短的几年研究使得这个领域的发展日新月异, 目前已成为抗体应用研究的热点。但随着研究的深入进展, 也暴露出许多问题。目前在以单抗为基础的临床治疗研究中, 面临五个最重要的问题及技术挑战: (1)使基因工程抗体具有与亲本抗体相一致的亲和力及特异性;(2)克服人抗

3、动物单抗及人抗任何与单抗相交联的细胞毒性物质的免疫反应; (3)制备合适的细胞毒性物质;(4)符合体内药物动力学及生物分布特性; (5)高产量, 低成本。本文综述了近几年国内外学者为攻克这几个难题在基因工程抗体领域所做的努力及研究进展。1.基因工程抗体概述基因工程抗体又称重组抗体, 是指利用重组DNA 及蛋白质工程技术对编码抗体的基因按不同需要进行加工改造和重新装配, 经转染适当的受体细胞所表达的抗体分子。目前报道的基因工程抗体很多, 分类方法不一, 大体可以分为三类。1.1完整的抗体分子该类抗体类似于天然抗体分子, 但经改造后更接近于人的免疫球蛋白, 可在一定程度上降低HAMA。嵌合抗体(c

4、himeric antibody): 由在基因水平上连接的小鼠抗体V 区及人抗体C 区组成。这种抗体含 75% 80%人抗体, 20%鼠抗体, 保留了原来鼠源单抗的特异性, 但对人体仍具一定的免疫原性。人源化抗体(humanized antibody)又称重构型抗体、改型抗体(reshaped antibody)或CDR 移植抗体(CDR grafting antibody): 通过置换三个发夹状环的鼠抗体超变区(又称互补决定区,CDR), 使构成抗原结合部位的轻重链各 3 个CDR 区是鼠源的, 其余均为人源的。该抗体对人的免疫原性大大降低, 但与抗原的亲和力也有所下降。虽然目前通过选择与鼠

5、单抗同源性大的抗体及改变骨架(fragment region, Fr)上某些关键的氨基酸残基或遮蔽鼠单抗CDR 表面的残基(veneering) 等方法, 人源化抗体与抗原的亲和力只能达到原先鼠源单抗的33% 35%。而且杂交瘤技术使人们可能在稳定的细胞株中生产任何一种单抗,该技术已广泛应用于科研及临床诊治中。鼠单抗作为异源性蛋白在人体内可诱发抗鼠抗体 (HAMA)的产生(Elliott等,1994),而通过杂交瘤技术获取人单抗,技术上还存在诸多问题,为解决这一难题,鼠单抗人源化成为最早出现的基 因工程抗体(Vaughan等,1998)。完整的人抗体(fully human antibody)

6、: 这是由人淋巴细胞产生的理想的抗体分子, 不包含任何鼠源成分。此种抗体不仅完全避免了HAMA 的产生, 而且特异性、亲和力不受影响。尽管利用人细胞制备单抗的工艺尚不成熟, 但抗体库技术、体外亲和力成熟及转基因动物的研究等, 已使生产完整的人抗体成为可能。【1】1.2抗体分子片段小分子抗体片段具有免疫原性低, 分子量小, 易于渗入目标组织及清除, 不与Fc 受体阳性细胞相结合等优点, 并便于发展其他效应, 如与毒素相连, 融合表达免疫毒素; 与放射性同位素相连, 在体内成像定位检查时本底低, 能呈现清晰图像。 单区抗体又称单域抗体: 由单个VH 功能区构成, 制备方法简便。但亲和力较完整抗体下

7、降了一个数量级, 另外VH 暴露了原先和VL 结合的疏水性表面,影响了其特异性。因此如果要应用VH 仍需进一步改造。【2】单链抗体: 由VH 和VL 中间联以含14 15 个氨基酸残基的小肽, 较稳定, 但亲和力比完整抗体及Fab 低, 可能与肽连接物干扰有关。除此之外, 一些scFv 有很强的聚集趋势。因此, 双价、三价 scFv 应运而生。研究表明, 多价 scFv 在结构和功能上更接近亲本抗体, 与抗原结合比单价 scFv 更敏感, 亲和力更高, 几乎与亲本抗体结合抗原的功能一致 。 二硫键稳定的Fv : 链内二硫键通过联结VH 和VL 功能区中结构上固定的骨架区使VH 和VL 成为一体

8、。这种方法适用于任何Fv, 因为用来连接二硫键的残基位于结构上固定的骨架区, 链内二硫键远离CDRs, 不干扰抗体与抗原结合。因此与 scFv 相比,dsFv 更具稳定性及亲和性。 Fab 和嵌合 Fab: Fab 包括重链的VH2CH1 和轻链的VL2CL, 如果CH1 和CL 是人源的, 就为嵌合Fab。Fab 由于两条链间的非极性相互作用, 很稳定, 而且因为有CH1 便于检测。基因工程菌表达的Fab 与酶解获得的Fab 具相同的功能。它的表达有时会比scFv 低, 可能与两条链在细菌周质中的折叠有关, 但亲和力比 scFv 好, 几乎与亲本抗体一致。分子识别单位(molecular r

9、ecognition unit,MRU ): 一种肽或非肽类分子, 表达一个CDR, 可能模拟亲本分子的特异性。有一些模拟抗体的肽类似物已被合成, 并证明能阻断病毒与细胞的结合;只构建并合成了一例非肽类分子, 完全消除了抗体对人的免疫原性 。MRU分子量小, 在药物动力学、生物分布尤其是组织穿透性、用药规则等方面具优越性, 可能成为显像分子及打靶分子中很重要的一部分。不过MRU 是否具有同Fab 及Fv 片段一样的亲和力还有待于进一步证实。【3】1.3新型抗体分子将抗体的部分片段连接到与抗体无关的序列上或被其他功能性分子所取代, 使这些抗体不仅具有与抗原结合的特性, 还能发挥其他效应。 抗体相

10、关分子又称新效能抗体: 通过基因拼接、化学交联等方法, 使不同类型抗体分子与酶、化学药物、放射性同位素、生物毒素、超抗原 等相结合。抗体发挥导向及载体效应, 使所连接物质准确无误地聚集于靶组织, 具有特异性高、用量少、副作用小的优点。双特异性抗体又称双功能抗体: 这种抗体的两个Fab 段能同时与两个不同的抗原相结合, 如与特异性抗原及效应细胞相结合。可通过化学交联、二硫键交换连接两种特异性不同的抗体或通过两种杂交瘤细胞融合而制备。还有人报道用逆转录病毒衍生的穿梭载体进行基因转移来生产。1.3.3 催化抗体(catalytic antibody)又称抗体酶(abzyme):指具有催化活性的抗体,

11、 不仅能与抗原结合, 还能使他们发生化学转变。这些抗体明显的作用是选择性结合并降解病毒、肿瘤细胞及其他生理靶细胞表面表达的蛋白质及碳水化合物抗原 。此外, 催化抗体还参与药物、化学制剂、新物质的合成, 并能为基本化学反应提供理论依据。例如转换态稳定、酸2碱反应及亲电、亲核反应的催化。自从第一例与酯类水解有关的转换态类似物的催化抗体的研制成功, 已建立了许多方法以提高催化抗体的反应性 , 包括蛋白质工程的应用及协同因子结合位点的设计等 。最近, 还有人报道用抗体库制备出切割各种核酸的抗体酶。表面表达的噬菌体抗体库也为催化抗体的生产及临床诊断、治疗方面的发展提供了一条可行的途径。【4】2基因工程抗

12、体生产技术2.1常规技术 提取杂交瘤细胞DNA、总RNA 及mRNA, 构建基因组文库或cDNA 文库, 利用抗体“共同引物”(consensus primer)及逆转录PCR 技术扩增、克隆出所需抗体基因,重组入原核或真核表达载体中, 在原核或真核系统中表达。原核宿主细胞表达成本低, 可大量生产, 目前E. coli系统应用最多。然而原核细胞不能进行翻译后的加工, 如二硫键的精确形成和糖基化, 而这些加工对维持抗体的正确折叠, 保持抗体的结构与功能具有重要的作用。因此,应用真核系统表达抗体基因有一定意义【5】。现今用于表达抗体基因的真核细胞多为骨髓瘤细胞,这类细胞表达产量高, 具良好的生物学

13、活性, 但有无致癌潜能尚待深入研究, 因此用昆虫 、植物细胞、酵母等表达抗体基因的报道并不鲜见。但真核细胞转染困难、效率不高、产量有限。2.2抗体库技术即用细菌克隆取代B 细胞克隆来表达抗体谱(repertoire)。主要步骤如下: (1)从免疫或未免疫的B 细胞中分离抗体可变区基因; (2)PCR 扩增抗体基因片段, 随机克隆入相应载体, 从而形成组合文库; (3)转化细菌, 表达产物通过多轮抗原亲和吸附, 最终筛选出所需抗体并大量生产。表面表达的噬菌体抗体库 是此项技术的一个突破性进展。在丝状噬菌体(M 13、Fd)外壳蛋白基因的信号肽序列与编码成熟蛋白序列之间插入外源基因, 并不影响其表

14、达系统。外源蛋白融合表达在噬菌体外壳蛋白的N 端, 可以自发折叠成天然状态, 具有其生物活性, 不形成包涵体。它在筛选时检测的不是细菌克隆的可溶性表达产物, 而是噬菌体载体转化细菌后, 融合表达在噬菌体颗粒表面上的噬菌体抗体。通过多轮抗原吸附22洗脱22扩增, 最终筛选到所需的抗体克隆, 大大简化了筛选过程。【6】抗体库技术较杂交瘤技术筛选范围缩小、时间缩短, 而且获得的是人源的抗体, 但要获得高亲和力抗体, 还需建立在免疫人体的基础上, 这对某些抗原来说有很大限制。2.3体外亲和力成熟 抗体应答过程中二次应答抗体的亲和力显著高于初次应答的抗体, 此为亲和力成熟现象。抗体库技术不包括引发突变的

15、过程在内, 而多次免疫人体有很大限制, 因而模拟体内过程, 在体外诱发突变成为获得高亲和力的一条途径。目前主要的方法为定点突变(替换关键部位的氨基酸)和随机突变(先造成大量随机突变, 再经抗原选择), 避开了免疫人体的限制, 同时其多样性也为难于筛选到的单抗如催化抗体提供了可能。随机合成库工作量繁重为其不足之处。2.4转基因动物以人的免疫球蛋白(Ig)基因组取代动物 Ig 基因组, 用相应抗原免疫动物后获得的即为人抗体。我国学者应用基因敲除和取代的方法 , 创建了产生嵌合抗体的小鼠, 经抗原免疫后, 产生的特异性嵌合抗体在血清中的滴度和亲和力无异于野生型小鼠。国外学者 在小鼠B 细胞内导入大片

16、段DNA, 并进行V (D)J 重排, 表达在B 细胞表面, 经抗原免疫后发生高突变并表现亲和力成熟和 Ig 类别转换, 产生完整的人抗体。美国BM S 公司和GT公司正致力于转基因山羊的研究。这种羊分泌的乳汁中含大量BR96 单抗(抗Le 相关糖类抗原单抗), 可望用于结肠癌、乳腺癌及肺癌的治疗。转基因动物是生产人抗体最理想的方法, 但技术难度较大, 超出了目前的水平。只有大片段的基因组工程包括转基因动物技术的改进, 才能真正得到突破【7】。3.基因工程抗体的临床研究3.1 基因工程抗体构建形式灵活多样,不仅能通过减少抗体中的鼠源成分降低免疫原性,而且可以将抗体的部分片段与其它功能性分子连接

17、,使抗体除了与抗原结合外,还能发挥其他效应分子的生物学作用。基因工程抗体在医学领域的许多方面都极具应用潜力,尤其在诊断和治疗肿瘤性疾病及抗感染方面优势明显。3.2 在肿瘤性疾病诊疗方面的应用 以标记抗体注入人体内显示肿瘤部位抗原与抗体结合的放射浓集称放射免疫显像,显像效果受抗体亲和力、特异性、半衰期和组织穿透力等因素影响。同时,用鼠源单抗会引起人抗鼠抗体反应,改变抗体药物代谢动力学而导致显像失败,并产生副作用。用基因工程抗体可解决上述问题,而且基因工程抗体中如单链抗体、F(ab)等,分子量小、能很快清除、组织穿透力强,显像本底低,更加适合放射免疫显像。恶性肿瘤的导向治疗是通过重组技术将抗肿瘤相

18、关抗原的抗体,与毒性蛋白如绿脓杆菌外毒素、蓖麻毒素及白喉毒素等,或是细胞因子如白介素、肿瘤坏死因子、干扰素等融合形成的重组毒素或免疫毒素可将细胞杀伤效应引导到肿瘤部位,对肿瘤细胞进行直接杀伤或调动机体免疫系统杀伤肿瘤细胞3.3 基因工程抗体的抗感染作用 预防和治疗感染性疾病常用的药物是疫苗和抗生素,但对于如SARS、AIDS等难以获得相应疫苗或疫苗效果不理想的病毒感染,目前仍缺乏有效的治疗方法。在这一方面,基因工程抗体应用前景十分广阔。如在治疗AIDS方面,利用抗体工程技术已成功地制备出HIV病毒整合菌的单链抗体ScAb2-19,对HIV病毒感染的早期和晚期具有有效的抑制作用,并可望成为AID

19、S基因治疗的有效手段。Seko等利用抗CD40L/B7-1 McAb从对急性病毒性心肌炎进行研究,结果表明该McAb能够明显减轻心肌炎症、预防心肌损害。另外,Ryu等实验研究表明,抗HBV表面抗原的人-鼠嵌合抗体能够明显中和乙肝病毒,比人乙肝病毒免疫球蛋白的活性高出2000倍。HCV核完全蛋白的噬菌体ScFv也能够有效地抑制HCV对浆细胞的感染。我国率先建立了针对SARS的基因工程抗体库,这对于SARS的预防、诊断和治疗都将起到重要作用和深远影响。3.4 基因工程抗体在器官移植中的应用 移植排斥反应是器官移植的主要障碍之一。T淋巴细胞和细胞因子在急性排斥反应中所起的核心作用已经被公认。虽然,现

20、有的免疫抑制剂能有效地控制75%85%的急性排斥反应。但随着病人长期存活率的提高,他们将面临真菌感染、病毒感染和肿瘤等危险。基因工程抗体在这一领域也崭露头角,其中抗CD3及抗IL-2基因工程抗体的研究较为多见。目前,Murmonab CD3和Anti-IL-2R已被FDA批准用于预防器官移植排斥反应并取得了较好的疗效。基因工程抗体不仅在上述疾病中有着重要的应用,而且在自身免疫性疾病、中毒性疾病、变态反应性疾病等的治疗方面也显示出独特的优势。3.5 每一种疾病在发生、发展过程中的每一个环节都有其相应的分子机制, 随着分子生物学的发展和基因工程抗体制备技术的进步, 不仅使研制针对疾病发病机制中关键分子的抗体成为可能, 而且可按不同需

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论