matlab语音识别系统_第1页
matlab语音识别系统_第2页
matlab语音识别系统_第3页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、智能仪器课程设计题目:MATLAB实现语音识别功能班级:学号:姓名:同组人员:任课教帅:完成时间:2012/11/3目录一、设计任务及要求1二、语音识别的简单介绍2.1语者识别的概念22.2 特征参数的提取32.3用矢量量化聚类法生成码本32.4VQ的说话人识别4三、算法程序分析3.1函数关系.43.2 代码说明53.2.1 函数mfcc53.2.2 函数disteu53.2.3 函数vqlbg.63.2.4 函数test63.2.5 函数testDB73.2.6 函数train83.2.7 函数melfb8四、演示分析.9五、心得体会.11附:GUI程序代码12设计任务及要求用MATLAB实

2、现简单的语音识别功能;具体设计要求如下:用MATLAB实现简单的数字19的语音识别功能。二、语音识别的简单介绍基丁VQ的说话人识别系统,欠量量化起着双重作用。在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。在识别(匹配)阶段,我们用VQ方法计算平均失真测度(本系统在计算距离d时,采用欧氏距离测度),从而判断说话人是谁。语音识别系统结构框图如图1所示。VQ根型诰本库:说话人的码本施处理M提取|I训练卜'说活人2的码志清言_a预加更.JL/I泻本匹配信图1语音识别系统结构框图2.1语者识别的概念语者识别就是根据说话人的语音信号来判别说话人的身份。语音是人的自然

3、届性之一,由丁说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用电话网络还可实现远程客户服务等。因此,近几年来,说话人识别越来越多的受到人们的重视。与其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且届丁非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,是唯一可以用作远程验证的识别技术。因此,说话人识别的应用前景非常广泛:今天,说话人识别技术已经关系到多学科的

4、研究领域,不同领域中的进步都对说话人识别的发展做出了贡献。说话人识别技术是集声学、语言学、计算机、信息处理和人工智能等诸多领域的一项综合技术,应用需求将十分广阔。在吃力语音信号的时候如何提取信号中关键的成分尤为重要。语音信号的特征参数的好坏直接导致了辨别的准确性。2.2特征参数的提取对丁特征参数的选取,我们使用mfcc的方法来提取。MFC兹数是基丁人的听觉特性利用人听觉的屏蔽效应,在Mel标度频率域提取出来的倒谱特征参数。MFC爹数的提取过程如下:1. 对输入的语音信号进行分帧、加窗,然后作离散傅立叶变换,获得频谱分布信息。设语音信号的DFT为:Xa(k)x(n)e,0kN1(1)n1其中式中

5、x(n)为输入的语音信号,N表示傅立叶变换的点数。2. 再求频谱幅度的平方,得到能量谱。3. 将能量谱通过一组Mel尺度的三角形滤波器组。我们定义一个有M个滤波器的滤波器组(滤波器的个数和临界带的个数相近),采用的滤波器为三角滤波器,中心频率为f(m),m=1,2,3,,M本系统取M=1004. 计算每个滤波器组输出的对数能量。N1_2S(m)lnJXa(k)|Hm(k),0mM1其中Hm(k)为二角滤波器的频率响应。5. 经过离散弦变换(DCT得到MFCC数。M1C(n)S(m)cos(n(m0.5/m),(3)m00nN1MFCC数个数通常取20-30,常常不用0阶倒谱系数,因为它反映的是

6、频谱能量,故在一般识别系统中,将称为能量系数,并不作为倒谱系数,本系统选取20阶倒谱系数。2.3用欠量量化聚类法生成码本我们将每个待识的说话人看作是一个信源,用一个码本来表征。码本是从该说话人的训练序列中提取的MFC(»征欠量聚类而生成。只要训练的序列足够长,可认为这个码本有效地包含了说话人的个人特征,而与讲话的内容无关。本系统采用基丁分裂的LBG的算法设计VQ码本,Xk(k1,2,K)为训练序歹0,B为码本。具体实现过程如下:1. 取提取出来的所有帧的特征欠量的型心(均值)作为第一个码字欠量B1。2. 将当前的码本Bm艮据以下规则分裂,形成2m码字。(BmBm(1)(4)BmBm(

7、1)其中m从1变化到当前的码本的码字数,£是分裂时的参数,本文£=0.01。根据得到的码本把所有的训练序列(特征欠量)进行分类,然后按照下面两个公式计算训练欠量量化失真量的总和Dn以及相对失真(n为迭代次数,初始n=0,D1=8,B为当前的码书),若相对失真小丁某一阈值£,迭代结束,当前的码书就是设计好的2m码字的码书,转5。否则,转下一步量化失真量和:KD(n)mind(Xk,B)(5)相对失真:D(n1)Dn|_n|Dn(6)3. 重新计算各个区域的新型心,得到新的码书,转3。重复2,3和4步,直到形成有M个码字的码书(M是所要求的码字数),其中D0=1000

8、Q2.4VQ的说话人识别设是未知的说话人的特征欠量X1,K,Xt),共有T帧是训练阶段形成的码书,表示码书第m个码字,每一个码书有M个码字。再计算测试者的平均量化失真D,并设置一个阈值,若D小丁此阈值,则是原训练者,反之则认为不是原训练者。D1/T.mind(Xj,Bm)(7)j11mM三、算法程序分析在具体的实现过程当中,采用了matlab软件来帮助完成这个项目。在matlab中主要由采集,分析,特征提取,比对几个重要部分。以下为在实际的操作中,具体用到得函数关系和作用一一列举在下面。3.1函数关系主要有两类函数文件Train.m和Test.m在Train.m调用Vqlbg.m获取训练录音的

9、vq码本,而Vqlbg.m调用mfcc.m获取单个录音的mel倒谱系数,接着mfcc.m调用Melfb.m-将能量谱通过一组Mel尺度的三角形滤波器组。在Test.m函数文件中调用Disteu.m计算训练录音(提供vq码本)与测试录音(提供mfcc)mel倒谱系数的距离,即判断两声音是否为同一录音者提供。Disteu.m调用mfcc.m获取单个录音的mel倒谱系数。mfcc.m调用Melfb.m-将能量谱通过一组Mel尺度的三角形滤波器组。3.2.1 3.2具体代码说明函数mffc:functionr=mfcc(s,fs)m=100;n=256;l=length(s);nbFrame=floo

10、r(l-n)/m)+1;%沿-00方向取整fori=1:nforj=1:nbFrameM(i,j)=s(j-1)*m)+i);%对矩阵M赋值endendh=hamming(n);%加hamming窗,以增加音框左端和右端的连续性M2=diag(h)*M;fori=1:nbFrameframe(:,i)=fft(M2(:,i);%对信号进行快速傅里叶变换FFTendt=n/2;tmax=l/fs;m=melfb(20,n,fs);%务上述线性频谱通过Mel频率滤波器组得到Mel频谱,下面在将其转化成对数频谱n2=1+floor(n/2);z=m*abs(frame(1:n2,:).A2;r=dc

11、t(log(z);%将上述对数频谱,经过离散余弦变换(DCT)变换到倒谱域,即可得到Mel倒谱系数(MFCC数)函数disteu-计算测试者和棋板码本的距离functiond=disteu(x,y)M,N=size(x);%音频x赋值给【MN1M2,P=size(y);%音频y赋值给【M2P】if(M=M2)error('不匹配!)%两个音频时间长度不相等endd=zeros(N,P);if(N<P)%在两个音频时间长度相等的前提下copies=zeros(1,P);forn=1:Nd(n,:)=sum(x(:,n+copies)-y),2,1);endelsecopies=ze

12、ros(1,N);forp=1:Pd(:,p)=sum(x-y(:,p+copies).A2,1)'end%成对欧氏距离的两个矩阵的列之间的距离endd=d.A0.5;函数vqlbg-该函数利用矢量量化提取了音频的vq码本functionr=vqlbg(d,k)e=.01;r=mean(d,2);dpr=10000;fori=1:log2(k)r=r*(1+e),r*(1-e);while(1=1)z=disteu(d,r);m,ind=min(z,2);t=0;forj=1:2Air(:,j)=mean(d(:,find(ind=j),2);x=disteu(d(:,find(ind

13、=j),r(:,j);forq=1:length(x)t=t+x(q);endendif(dpr-t)/t)<e)break;elsedpr=t;endendend函数testfunctionfinalmsg=test(testdir,n,code)fork=1:n%readtestsoundfileofeachspeakerfile=sprintf('%ss%d.wav',testdir,k);s,fs=wavread(file);v=mfcc(s,fs);%得到测试人语音的mel倒谱系数distmin=4;%阈值设置处%就判断一次,因为棋板里面只有一个文件d=dist

14、eu(v,code1);%计算得到棋板和要判断的声音之间的“距离”dist=sum(min(d,2)/size(d,1);%变换得到一个距离的量%测试阈值数量级msgc=sprintf('与棋板语音信号的差值为:10f',dist);disp(msgc);ifdist<=distmin%msg=sprintf('求!n',k);finalmsg='disp(msg);end%此人不匹配%此人匹配一个阈值,小于阈值,则就是这个人。第%d位说话者与棋板语音信号匹配,符合要此位说话者符合要求!'%界面显示语句,可随意设ifdist>dist

15、minmsg=sprintf('第%d位说话者与棋板语音信号不匹配,不符合要求!n',k);finalmsg='此位说话者不符合要求!'%界面显示语句,可随意设定disp(msg);endend函数testDB这个函数实际上是对数据库一个查询,根据测试者的声音,找相应的文件,并且给出是谁的提示functiontestmsg=testDB(testdir,n,code)nameList='1','2','3','4','5','6','7','8

16、','9'%这个是我们要识别的9个数fork=1:n%数据库中每一个说话人的特征file=sprintf('%ss%d.wav',testdir,k);瞰出文件的路径对找到的文件取mfcc变换s,fs=wavread(file);v=mfcc(s,fs);distmin=inf;k1=0;forl=1:length(code)d=disteu(v,codel);dist=sum(min(d,2)/size(d,1);ifdist<distmin这里和test函数里面一样但多了一个具体语distmin=dist;%者的识别k1=l;endendmsg

17、=nameListk1msgbox(msg);end函数train-该函数就是对首频进行训练,也就是提取特征参数functioncode=train(traindir,n)k=16;%numberofcentroidsrequiredfori=1:n%对数据库中的代码形成码本file=sprintf('%ss%d.wav',traindir,i);disp(file);计算MFCC's提取特征特征,返回值是Mel倒谱系数,是一个log的dct得到的训练V眼本通过矢量量化,得到原说s,fs=wavread(file);v=mfcc(s,fs);%codei=vqlbg(v

18、,k);%话人的VQ码本end四、演示分析我们的功能分为两部分:对已经保存的9个数字的语音进行辨别和实时的判断说话人说的是否为一个数.在前者的实验过程中,先把9个数字的声音保存成wav的格式,放在一个文件夹中,作为一个检测的数据库.然后对检测者实行识别,系统给出提示是哪个数字.在第二个功能中,实时的录取一段说话人的声音作为棋板,提取mfcc特征参数,随后紧接着进行遇着识别,也就是让其他人再说相同的话,看是否是原说话者.实验过程及具体功能如下:先打开Matlab使CurrentDirectory为录音及程序所所在的文件夹再打开文件“enter.m”,点run运行,打开enter界面,点击“进入”按钮进入系统。(注:文件包未封装完毕,目前只能通过此方式打开运行。)(如下图figure1)figurel在对数据库中已有的语者进行识别模块选择载入语音库语音个数;点击语音库录制模版进行已存语音信息的提取;点击录音-test进行现场

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论