下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第九节 函数模型及其应用【使用说明】1.课前完成预习学案,牢记基础知识,掌握基本题型,时间不超过30分钟;特优生完成所有题目,优秀生完成除(*)外所有题目,待优生完成不带(*)题目。2.认真限时完成,书写规范;课上小组合作探究,答疑解惑。3.小组长在课上讨论环节要在组内起引领作用,控制讨论节奏。4.必须记住的内容:解答应用问题的程序概括为“四步八字”,即(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题的意
2、义考查函数模型的知识表现在以下几个方面:(1)利用函数模型的单调性比较数的大小;(2)比较几种函数图象的变化规律,证明不等式或求解不等式;(3)函数性质与图象相结合,运用“数形结合”解答一些综合问题一、 学习目标1. 了解指数函数、对数函数以及幂函数的增长特征知道直线上升、指数增长、对数增长等不同函数类型增长的含义2. 了解函数模型(指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用二问题导学1三种增长型函数模型的图象与性质函数性质yax(a>1)ylogax(a>1)yxn(n>0)在(0,) 上的单调性增长速度图象的变化随x增大逐渐表现为与_
3、平行随x增大逐渐表现为与_平行随n值变化而不同2.三种增长型函数之间增长速度的比较(1)指数函数yax (a>1)与幂函数yxn (n>0)在区间(0,)上,无论n比a大多少,尽管在x的一定范围内ax会小于xn,但由于yax的增长速度_yxn的增长速度,因而总存在一个x0,当x>x0时有_(2)对数函数ylogax(a>1)与幂函数yxn (n>0)对数函数ylogax(a>1)的增长速度,不论a与n值的大小如何总会_yxn的增长速度,因而在定义域内总存在一个实数x0,使x>x0时有_由(1)(2)可以看出三种增长型的函数尽管均为增函数,但它们的增长速
4、度不同,且不在同一个档次上,因此在(0,)上,总会存在一个x0,使x>x0时有_3函数模型的应用实例的基本题型(1)给定函数模型解决实际问题;(2)建立确定性的函数模型解决问题;(3)建立拟合函数模型解决实际问题我的收获与发现:我的疑问:三 合作探究探究点一一次函数、二次函数模型例1(2011·阳江模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为yx2548x8 000,已知此生产线年产量最大为210吨(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元
5、,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?变式迁移1某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出当每辆车的月租金每增加50元时,未租出的车将会增加一辆租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?探究点二分段函数模型例2据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在
6、直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km)(1)当t4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由变式迁移2某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x(吨)(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费探究点三指数函数
7、模型例3诺贝尔奖发放方式为:每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加假设基金平均年利率为r6.24%.资料显示:1999年诺贝尔奖发放后基金总额约为19 800万美元设f(x)表示第x(xN*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺
8、贝尔奖各项奖金高达150万美元”是否为真,并说明理由(参考数据:1.031 291.32)变式迁移3(2011·商丘模拟)现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg 30.477,lg 20.301)四 深化提高1在某种新型材料的研制中,实验人员获得了下列一组实验数据现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是() X1.953.003.945.106.12Y0.971.591.982.352.61A.y2xBylog2xCy12(x
9、21)Dy2.61cos x2拟定甲地到乙地通话m分钟的电话费f(m)1.06×(0.5×m1)(单位:元),其中m>0,m表示不大于m的最大整数(如3.72)3,44),当m0.5,3.1时,函数f(m)的值域是()A1.06,2.12,3.18,4.24B1.06,1.59,2.12,2.65C1.06,1.59,2.12,2.65,3.18D1.59,2.12,2.653某商店出售A、B两种价格不同的商品,由于商品A连续两次提价20%,同时商品B连续两次降价20%,结果都以每件23元售出,若商店同时售出这两种商品各一件,则与价格不升不降时的情况比较,商店盈利情况
10、是 ()A多赚约6元B少赚约6元C多赚约2元D盈利相同4国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿酬的11%纳税已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为()A4 000元B3 800元C4 200元D3 600元5生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)12x22x20(万元)一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为 ()A18万件B20万件C16万件D8万件6据某校环保小组调查,某区垃圾量
11、的年增长率为b,2009年产生的垃圾量为a t,由此预测,该区下一年的垃圾量为_t,2014年的垃圾量为_t.7已知每生产100克饼干的原材料加工费为1.8元某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:型号小包装大包装重量100克300克包装费0.5元0.7元销售价格3.00元8.4元则下列说法中正确的是_(填序号)买小包装实惠;买大包装实惠;卖3小包比卖1大包盈利多;卖1大包比卖3小包盈利多8设某企业每月生产电机x台,根据企业月度报表知,每月总产值m(万元)与总支出n(万元)近似地满足下列关系:m92x14,n14x25x74,当mn0时,称不亏损企业;当mn<0时
12、,称亏损企业,且nm为亏损额(1)企业要成为不亏损企业,每月至少要生产多少台电机?(2)当月总产值为多少时,企业亏损最严重,最大亏损额为多少?9某单位用2 160万元购得一块空地,计划在该块地上建造一栋至少10层、每层2 000平方米的楼房经测算,如果将楼房建为x(x10)层,则每平方米的平均建筑费用为56048x(单位:元)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用平均建筑费用平均购地费用,平均购地费用购地总费用建筑总面积)10某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲为了获得较好的效益,该宾馆要给床位一个合适的价格,条件是:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024基于非对称的数据加密算法技术规范
- 电冰箱、空调器安装与维护电子教案 2.1 认识选用电冰箱
- 演艺消费季音乐节(演唱会)类演出项目结项审核申报书
- 2024年重庆市九龙坡区杨家坪中学小升初数学试卷
- 河南省郑州市第七高级中学2024-2025学年高二上学期期中考试生物试题(含答案)
- 2024-2025学年内蒙古鄂尔多斯市西四旗高二(上)期中数学试卷(含答案)
- 尿道注射器产业运行及前景预测报告
- 座位名卡市场发展预测和趋势分析
- 发光或机械信号板市场发展预测和趋势分析
- 人教版英语八年级下册 Unit 8 刷题系列
- 地震波动力学
- 诉讼费退费账户确认书
- 辽宁2022年辽宁省农村信用社联合社内部选聘行业审计工作人员上岸提分题库3套【500题带答案含详解】
- T-GDAEPI 07-2022 广东省环保管家服务规范
- 科学领域核心经验《幼儿园科学领域教育精要-关键经验与活动指导》
- JJF 1627-2017皂膜流量计法标准漏孔校准规范
- GB/T 36195-2018畜禽粪便无害化处理技术规范
- GB/T 18833-2012道路交通反光膜
- GB/T 15063-2020复合肥料
- GB/T 12767-1991粉末冶金制品表面粗糙度参数及其数值
- 冀教版小学英语 四年级上册-lesson 13 at school
评论
0/150
提交评论